
Dependence Based Prefetching for Linked Data Structures

Amir Roth, Andreas Moshovos and Gurindar S. Sohi
Computer Sciences Department
University of Wisconsin, Madison

1210 W. Dayton St.
Madison, WI 53706

{amir, moshovos, sohi}@cs.wisc.edu

Abstract

We introduce a dynamic scheme that captures the accesspat-
terns of linked data structures and can be used to predict
future accesses with high accuracy. Our technique exploits
the dependence relationships that exist between loads that
produce addresses and loads that consume these addresses.
By identzj+ing producer-consumer pairs, we construct a
compact internal representation for the associated structure
and its traversal. To achieve a prefetching eflect, a small
prefetch engine speculatively traverses this representation
ahead of the executing program. Dependence-based
prefetching achieves speedups of up to 2.5% on a suite of
pointer-intensive programs.

1 Introduction

Linked data structures (LDS) such as lists and trees are used in
many important applications. The importance of LDS is growing
with the increasing popularity of C++, Java, and other systems that
use linked object graphs and function tables. Flexible, dynamic
construction allows linked structures to grow large and difficult to
cache. At the same time, LDS are traversed in a way that prevents
individual accesses from being overlapped. These factors magnify
the negative performance impact of off-chip data access.

Prefetching can be an important tool in boosting the performance of
applications that use LDS. Historically, however, prefetch mecha-
nisms have had trouble with these structures. Not only do the over-
lap restrictions reduce the effectiveness with which memory latency
can be hidden, but LDS accesses have defied traditional address
prediction techniques that drive prefetching activity. These tech-
niques rely on address stream regularities to extract arithmetic pat-
terns that can be used to make predictions. Such patterns are not
necessarily found in LDS access sequences. In this work, we pro-
pose a new solution that attacks both problems by exploiting depen-
dence information.

Permlssnon to make digital or hard copes of all or part of this work lor
personal or classroom use is granted without fee prawded that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the fwst page.
To copy otherwise, to republish, to post on servers or to
redistribute to IIsts, requires prior specific permrssion andlor a fee.
ASPLOS VIII lo/98 CA, USA
0 1998 ACM l-581 13.107.0/98/0010...$5.00

We say that two instructions are dependent if one produces a value
the other consumes, or affects its execution in some other way.
Techniques that exploit dependences base analysis and speculation
on this relationship, rather than the actual values exchanged. To
date, most microarchitectural techniques have used value-based
speculation techniques. Caches exploit temporal and spatial local-
ity in the set of addresses referenced by the program, branches are
predicted using outcomes of previous branches, and values are
speculated using histories of previous instruction results. However,
recent work [15][16][23][6] has demonstrated that dependence rela-
tionships exhibit regularities that can be exploited in ways that the
values they exchange cannot. These studies have focused primarily
on memory dependences that exist between stores and loads that
access the same location. Our technique uses load value depen-
dences, a class of dependences between loads that produce (load
from memory) addresses and those that subsequently consume
(access data at) those addresses. Load value dependences capture
regularities in the address generation process rather than in the
addresses themselves.

Dependence-based preftching dynamically identifies loads that
access linked data structures. It collects these loads along with the
dependence relationships that connect them and constructs a
description of the steps the program has followed to traverse the
structure. Predicting that the program will continue to follow these
same steps, a small prefetch engine takes this description and spec-
ulatively executes it in parallel with the original program. Since it
executes only the loads that are required to touch the data struc-
ture’s elements, this engine initiates LDS accesses at a rate dictated
only by the (memory) latency of each operation. Since the proces-
sor executes all instructions, the prefetch engine may run ahead,
producing the desired prefetching effect.

The rest of the work is organized as follows. We begin with a dis-
cussion of the issues involved in prefetching linked data structures
in section 2. In section 3, we briefly introduce our benchmark suite,
and present statistics that motivate our solution for this problem. A
detailed description of our mechanism is presented in section 4, fol-
lowed by a quantitative evaluation in section 5. We relate our solu-
tion to other work in section 6, then offer our conclusions.

2 Prefetching Linked Data Structures

Linked data structures (LDS) are widely used in compilers, data-
bases, and graphics applications, LDS are constructed by connect-
ing data elements to one another explicitly; elements in an LDS

115

contain fields that name all adjacent elements by address. This
mode of connectivity allows the easy construction and manipula-
tion of data structures of arbitrary shape, such as trees and graphs.
Dynamic construction also allows LDS to grow very large, making
them difficult to cache. Added to this is the fact that accesses to
successive LDS elements, and to the data they contain cannot be
overlapped, as the process of address generation itself requires an
inherently serial evaluation through memory. Commonly known
as the pointer-chasing problem, this condition effectively exposes
the full latency of each LDS access. The key to hiding this latency
is to issue LDS accesses as early as possible, overlapping them
with other work.

Prefetching can be implemented in both hardware and software.
Software schemes [17][12][lo] have potentially larger analysis
scope and add no complexity to the processor. However, we
choose to investigate hardware schemes for several reasons. Hard-
ware mechanisms require no a priori program information or
transformations, as well as no architectural interface changes.
They impose no explicit execution overhead. Hardware tech-
niques have at their disposal the execution profile of the program,
as well as other information, like the addresses of LDS elements,
that is available only at run-time. Dynamic solutions also have the
potential for adapting to program phases, changing conditions in
the processor and memory system, and behavior dictated by the
input. Finally, a hardware scheme may be able to initiate action
earlier than a program supplied cue, since the latter must be “seen”
by the processor. This can be a useful .property when contending
with serialized latencies caused by pointer chasing.

Hardware prefetchers proposed to date [9][I] analyze the address
history associated with an instruction or group of instructions.
They exploit regularity in the stream to compress the access
sequence, quickly regenerating it to produce prefetching addresses.
For example, address sequences that exhibit arithmetic regularity,
such as the ones corresponding to sequential array traversal, can be
compressed to a pair of numbers: a base value and a stride. Not
only is this representation extremely compact, it has a nice prop-
erty that allows it to be used as a formula to generate previously
unseen addresses that closely match actual program accesses.

In line with these methods, we may attempt to compress LDS
access sequences. Ordinarily, a prefetch address for an LDS ele-
ment cannot be generated until the addresses of all previous ele-
ments in the structure are known. Compression is attractive
because it allows for generation of prefetch addresses for arbitrary
LDS elements without the need for a serial evaluation. However,
compressing an LDS access stream can be a difficult task.
Addresses of adjacent LDS elements are not required to have a
regular arithmetic relationship. Linear layout in an LDS is usually
the result of allocator strategy, compacting garbage collection, or
careful hand optimization, and is often compromised as the data
structure evolves. In the absence of such regularity, we expect the
size of the compressed form to be proportional (smaller but cer-
tainly not constant) to the size of the LDS itself. This property
potentially makes compression of large structures inconvenient.
Even in the event that sufficient compression is possible, it is
unlikely that the compressed format could be used to generate pre-
viously unseen addresses.

To handle the case in which address regularities are not available
and compression is not possible, we make the observation that the
instructions used by the program to access a particular set of LDS
elements, are themselves a compact formula for generating the
addresses of those elements. The mechanism we present captures
the process of address generation itself and predicts addresses by
mimicking this process. In addition, by creating a separate, depen-
dence-based representation for this important kernel of the pro-
gram, our technique can issue requests for LDS elements with little
overhead, and with no interference from other parts of the pro-
gram. The details of the mechanism are described in section 4. As
motivation, we first present a brief analysis of LDS access behav-
ior in a suite of programs.

3 A Study of Pointer Intensive Programs

The technique we propose improves performance by hiding mem-
ory latency associated with LDS access. Its effectiveness will be a
function of three factors: (i) the number of LDS accesses in the
program and their contribution to the total latency associated with
the memory system, (ii) the amount of work in the program that
can be overlapped with this latency, and (iii) our mechanism’s abil-
ity to capture this behavior and leverage the available work. In this
section, we attempt to quantify the first two parameters by present-
ing a characterization of LDS access behavior for programs from
the Olden pointer-intensive benchmark suite [20]. The Olden
benchmarks are a collection of programs that includes small and
medium sized scientific codes (bh and em3d), process simulations
(health and power), graph optimization routines (mst and tsp),
graphics utilities (perimeter and voronoi), a sorting routine (bisort)
and a toy tree benchmark (treeadd). We use this set of programs as
it had been previously used to evaluate compiler prefetching algo-
rithms [121. A summary of the benchmarks, the sizes and types of
linked data structures used, input parameters and dynamic instruc-
tion counts is shown in Table 1. In order to compress the subse-
quent figures, we will refer to the benchmarks by only the first
three letters of their name (e.g., bis for bisort).

LDS-specific memory behavior can be summarized by examining
the load instructions that access LDS elements, orpointer loads in
our terminology. A pointer load is a load whose input base address
was produced by another load instruction. This definition encom-
passes LDS accesses, and distinguishes them from stack and array
loads, whose addresses are computed arithmetically, and loads that
use addresses produced by a means other than an indirection.

The latency associated with pointer loads is difficult to account for
in a way that is not highly dependent on a particular processor con-
figuration; we use data cache miss rate as an alternate metric to
give a feel for the magnitude of the problem. Also shown in table
1 for each benchmark are the number of loads (as a percentage of
all dynamic instructions) and the data miss rate for a 32KB, 2-way,
32B line data cache. Pointer load behavior is summarized under
the headings pointer loads, which gives the fraction of all loads
that are pointer based, and pointer load contribution, which gives
the percent of all misses caused by pointer loads.

Pointer loads represent a large fraction of all loads in the Olden
benchmarks and contribute a disproportionately larger fraction of

116

Table 1. Olden benchmark suite. Data structures used, input parameters, data set size, dynamic instruction count, loads, pointer loads
as a percentage of all loads, data cache miss ratefor a 32KB cache andpointer load contribution to the miss rate.

the cache misses, accounting for nearly all misses in many of the
programs. With several exceptions, notably health, em3d, and mst
most of these programs have good a priori data cache behavior.
These programs may still benefit from prefetching if the miss
latencies are high and enough work exists to overlap with them.

3.1 Pointer-Load Classification

We find it useful to further classify pointer loads into recurrent,
traversal, and data loads. Members of each category have proper-
ties that restrict their overlap with different kinds of work, and can
therefore be thought of as being closer or further from the pro-
gram’s critical path. Consequently, their importance to the perfor-
mance of the program, and to our mechanism, varies.

Recurrent loads are a subclass of pointer loads; they produce
addresses consumed by future instances of themselves. Recurrent
loads are often used as induction variables in loops (e.g., p = p-
mext in a list or p = p+left in a tree). It is important to note that
although our working definition is restricted to self-recurrent
loads, loads may feed themselves indirectly (e.g., p = p-Aeft-wight).
Indirect recurrent loads are lumped together with traversal loads; a
class of loads that produce addresses for pointer loads other than
themselves. Data loads are all pointer loads that are neither recur-
rent loads nor traversal loads; they load data other than addresses.

As an illustration of the definitions, we consider a short piece of
code that processes a list of machine instructions, each represented
by a pair of linked structures. The loop source and assembly code
are shown in figure l(a) and (b) respectively, the list itself is shown
in part (c). Instruction 6, which loads the next field of an element,
is a recurrent load. Instruction 3 loads the address of the pat strw-
hue and is a traversal load. Instruction 4 loads the code field and
is a data load. Also shown in figure l(c) are three instances of
each load corresponding to three loop iterations.

The important aspect of our classification scheme is that it parti-
tions loads according to the type of work that can be used to in
overlapping and hiding their latency. We illustrate this using two
examples. In the first, we try to hide the latency of a recurrent

(4 for (insn = 1; kin; insn = insn-mext)
process(insn->paWcode);

(b) 1: lw$24,f insn = f
2: baq $24, $0, $Exit

$Head: 3: Iw $15,8($24) inswpat
4: Iw $4,0($15) inswpat-xode
5: jal process

$Else: 6: Iw $24,4($24) insn = inswnext
7: bne $24,$O,$Head

$Exit::

Figure 1. LDS traversal txample. (a) Source and (6) machine
code that traverses a linked list. (c) List layout in memory.

load, load 6, which has a latency longer than the execution time of
a single iteration. Since loads cannot be overlapped with loads that
depend on them, we see that 6’s latency can only be overlapped
with work from the same iteration (e.g., 6c with 3c and 4c), leaving
the rest exposed. We cannot prefetch 6c effectively because to do
so would require that 6b complete execution before its correspond-
ing iteration. Similar restrictions apply to traversal loads (e.g.,
load 3). In the second case, we attempt to hide the latency of a
data load, 4. This can be done if 6 hits in the data cache. Namely,
we prefetch 6b as soon as 6a completes, and use the prefetched
value to prefetch 3c and then 4c. The latency of 4c is thus over-
lapped with some work from the previous iteration. These exam-
ples suggest that handling recurrent and traversal loads efficiently
is the key to prefetching LDS.

3.2 Quantifying Available Work

In the previous sections, we identified the work available for over-
lapping with pointer loads, especially recurrent and traversal loads,
as being important in a prefetching solution. We now quantify this

117

available work. To do so, we measure the distance in dynamic
instructions between a pointer load and the closest load that pro-
duces its base address. Multiple loads may produce the same
address, for example when the address is passed as a parameter via
the stack. Although choosing the closest load represents the worst
case for our mechanism, it provides an unambiguous metric. Fig-
ure 2 presents cumulative distributions of these distances for (a) all
pointer loads and (b) recurrent loads.

100%

75%

50%

25%

0%
bh his em3 hea mst per pow tre tso vor

bh bis em3 hea mst per pow tre tsp vor

Figure 2. Cumulative address-producer distance distribution.
Distance between a pointer load and the closest producer of its
base address. Distances of at most 8, 16, 32, 64, 128 (gray),
and 256 (black) dynamic instructions for (a) all pointer loads
and(b) recurrent loads.

The results shown in figure 2 are mixed. Programs like bh, bisort,
em3d, perimeter, power, and voronoi contain a large number of
recurrent loads with long producer distances (over 128 dynamic
instructions). Health, mst, treeadd, and tsp have a large represen-
tation of short dependence-distance recurrent loads, indicating an
abundance of tight loops and a potential lack of work for overlap-
ping with prefetches. However, dependence-based prefetching
may still have a positive effect by hiding some of the latency asso-
ciated with these loads. In addition, these programs have traversal
and data loads with somewhat longer producer distances, indicat-
ing that prefetching has the opportunity to be successful. We now
present a mechanism that attempts to exploit as much of the avail-
able work as possible to tolerate pointer load latency.

4 A Dependence-Based Prefetch Mechanism

Dependence-based prefetching dynamically extracts the program
kernel responsible for computing addresses of LDS elements. It
then speculatively and aggressively executes this kernel alongside
the original program. Prefetching is achieved as the engine
advances ahead of the main program. In this section, we describe
the goals and intended operation of a prefetching mechanism that
can predict linked structure access and effectively tolerate serial-
ized latencies. We use these goals to derive a set of requirements
for a dependence-based approach. These, in turn, drive our pro-
posed implementation.

We illustrate the desired effect of an LDS prefetching mechanism
using the linked list example of the previous section. Figure 3(a)
shows an abstract processor executing the program fragment from

figure 1. We show the dynamic instruction stream with all instruc-
tions currently in the processor’s window shaded. Let us assume
that a prefetch engine has identified load 1 as producing the value
that initiates the load 6 recurrence, and that load 6 has been tar-
geted for prefetch. We would like prefetching to proceed in data-
flow fashion. That is, as soon as an instance of load 6 completes, a
prefetch for the next instance should be issued immediately. This
rapid sequence of prefetches is shown in figure 3(a). The proces-
sor uses the value loaded by 1 to fetch the second list element. The
prefetch engine takes over from there, prefetching an element as
soon as the address of the previous element becomes available. We
note that, using this scheme and allowing for some rough timing
assumptions, the prefetch for the fourth element (6~) may be
issued by the prefetch engine before the processor even sees the
load corresponding to the third element.

The ability to forge ahead of the current instruction window is an
important feature that allows a potential solution to attack serial-
ized latencies more efficiently than a typical dynamically-sched-
uled processor. An out-of-order machine, shown in figure 3(a),
can approximate the effect of the scheme we present by scheduling
pointer loads as soon as their inputs are ready. It may, for example,
issue instruction 6 as soon as instruction 1 completes. However, to
do so requires that the processor both (i) see instruction 6, and (ii)
understand that it is in some way more important than instruction 3
and issue it first. Dependence-based prefetching effectively meets
these two requirements by considering only pointer loads. First, it
prioritizes recurrent loads. More importantly, it can initiate
prefetches for loads that the processor has not seen. Advancing
sufficiently far ahead of the processor and opening up enough dis-
tance between the prefetch and the target load, allows dependence-
based prefetches to cover long LDS access latencies. While this
does not constitute a solution to the pointer-chasing problem per
se, it does overlap the latency of a given pointer load with all avail-
able work starting with the production of its base address.

(4 Processor Prefetch Engine
PC ADDRVAL

:b)
EL

pmziq
pat-xode

Figure 3. High-level dependence-based prefetching example.
(a) High level description of the prefetch effect we hope to
achieve. (b) The abstract internal representation of the list
required to drive this mechanism.

To achieve the effect we described, a mechanism must: (i) identify
instructions that participate in traversal (1, 3,4 and 6 in our exam-
ple), (ii) activate instances of these instructions with the appropri-
ate input values and (iii) do so as soon as those input values

118

become available. We satisfy these requirements by exploiting the
dependence relationship that exists between the loads that produce
addresses and those that use them. We use dependence informa-
tion to rephrase our requirements: as each address is loaded, we
predict the loads that will use that address, and issue prefetches for
them immediately. It is interesting to note that this process is self-
recurrent, as the completed prefetches may themselves be used to
launch new prefetches.

We aim to provide structures that make the process of finding
potential consumers of a given address simple, and use these to
drive the prefetching process. At an abstract level, the information
we need to represent can be thought of as a graph. Figure 3(b)
shows the graph representation for the list traversal. This graph
encodes both the structural dejinition of the list and the steps the
program took to traverse it. The prefetch schedule in part (a) was
generated by “unrolling” the shaded part of this representation.

With a high level understanding of how the dependence-based
prefetching functions, we go into a detailed description of several
of its important aspects. Section 4.1 describes how information is
gathered and used to construct a representation for a particular
LDS. In section 4.2, we show how prefetches are requested and
serviced by the memory system. Section 4.3 describes how the
prefetching process is throttled to minimize erroneous prefetches.
In each section, we provide a simple implementation of the corre-
sponding structures and use our running example (insn = inswnext)
to demonstrate their function. Finally, we give a short qualitative
example in the context of prefetching a binary tree.

4.1 Constructing an LDS Representation

In this section, we describe how LDS traversal is represented using
dependences, and how these dependences are identified and cap-
tured. To make the rest of the discussion more concrete, we begin
with the representation.

The component responsible for storing dependence information is
the Correlation Table (CT). Each correlation represents a depen-
dence between a load instruction that produces an address (PR)
and a subsequent load that uses (consumes) that address (CN). In
addition to producer and consumer identities (an instruction’s
identity is its PC), each correlation also contains an address gener-
ation template (TMPL), which is a condensed form of the consum-
ing load itself. A template contains an opcode and an offset only.
A correlation implicitly contains a source identifier (the producer).
Destination specifiers are incidental since templates are instanti-
ated for their prefetching effect only. The CT may be implemented
as a cache indexed by the producer and should be associative to
some degree, as a single producer may feed multiple consumers.

The dynamic creation of correlations requires that we identify
loads that produce addresses, identify loads that consume those
addresses, and pair producers with consumers even though they
might be far apart in the dynamic instruction stream. To do so, the
processor maintains a list of the most recently loaded values and
the corresponding instructions. This structure, the Potential Pro-
ducer FEndow (PPW), may be implemented as a queue or a cache
containing load value (ADDRVAL) and producer (PR) pairs,

indexed by the load value to facilitate matching. Figure 4(a) shows
the CT and PPW.

(b)
BASEVAL PC INST Processor

Figure 4. CT and PPW working example. (a) Block schematic
of PPW and CT. (b) The PPW and CT capture the recurrence
between instruction 6 and itsecf (insn = insn-mext).

Correlations are created at instruction commit time. As a load
commits, its base address value is checked against entries in the
PPW, with a correlation created on a match. The load and its target
value are then recorded in the PPW for checking against future
loads. This process is illustrated in figure 4(b), which shows how
the self dependence of load 6 (insn = insn-mext) is captured. As
load 6 commits, its base address value (BASEVAL) is looked up in
the PPW, which indicates that the previous instance of 6 was the
last to load this address (action 1, circled). A new correlation is
inserted into the CT establishing the dependence from 6 to itself
(action 2). Finally, the value loaded by the current instance of load
6 is entered into the PPW (action 3).

We close this section with two comments regarding the depen-
dence detection process. First, we note that not all loads are
potential consumers, nor are all loads producer candidates that
must be entered into the PPW. As an optimization, we dismiss
loads based off the stack and global pointers as potential consum-
ers since their base addresses are computed via addition. As
potential producers, we consider only loads that access address-
sized quantities. This is only a heuristic and by no means a substi-
tute for true type information. Many loads that fit the size criteria
(e.g., instruction 4 in our running example) do not load addresses.
These false address loads reduce the effective size of the PPW and
contend for CT ports. A further optimization would involve identi-
fying (true) address loads using compiler analysis or profiling, and
communicating this information to the processor using a hint.

Finally, we observe that although the prefetch engine is depen-
dence based, dependences are captured using values (addresses).
This organization is particularly suitable for our application.
Pointer addresses flow from producer to eventual consumer
unchanged by arithmetic manipulation. Furthermore, numeric val-
ues associated with addresses are rarely seen in other contexts,
allowing us to assume safely that two instructions that name the
same address are actually related. More importantly, using values
allows us to capture dependences accurately, ignoring intermediate
register moves and spills to and from memory. Finding earlier
producers enables more work to be overlapped with a given miss.

119

4.2 Prefetch Issue and Use

In this section, we describe how prefetch requests are issued, how
they are serviced by the memory system, and how the results are
used by subsequent loads. The organization we present is driven
by the beliefs that data ports are precious and the prefetch engine
should use them only when they are idle, and that prefetched
blocks should be kept out of the data cache until they are known to
be useful. In line with these requirements, we introduce two new
structures. The Prefetch Request Queue (PRQ) buffers prefetch
requests until data ports are available to service them. The
Prefetch Buffer (PB) is a small data cache that temporarily holds
prefetched blocks. The PRQ and PB are shown in figure 5(a).

Prefetch requests are issued to the PRQ when an address load com-
pletes in the processor. A completed load probes the CT in search
of potential consumers. On a match, a prefetch address is formed
by applying the address generation formula to the value just loaded
and a request is enqueued onto the PRQ on behalf of the con-
sumer. Figure 5(b) illustrates this sequence for our running exam-
ple. An instance of load 6 completes and queries the CT (action
1). Finding the self correlation, it computes the address of the next
list element using the loaded value and the correlation formula
(action 2). A prefetch request for this address is tagged with the
appropriate consumer and enqueued (action 3).

(a)

(c)

(d) \(6)/

Load ,w,

Figure 5. Prefetch example. (a) Block schematic of the PB and
PRQ. (b) A completed load probes the CT, finds a potential
consumer and enqueues a prefetch request onto the PRQ. (c) If
a data cache port is free, the prefetch request is dequeued and
issued to the prefetch buflex Theprefetch buffer chechz thejrst
level cache for the block, issuing a request to the second level
cache on a miss. (d) A load uses the prefetched block.

Prefetch requests are dequeued from the PRQ and serviced by the
memory system when a data cache port is free. The PB attempts to
extract the block from the first level cache, issuing a request to the
second level cache on a miss. Spurious requests (e.g., attempting

to chase a null pointer or access an unmapped page) are simply
dropped. In figure 5(c), the request made by instruction 8 is
dequeued and placed into the PB (action 4). Since the correspond-
ing block is not found in the first level cache, a request is issued to
the next level (action 5).

Since we would like the prefetch engine to run ahead of the proces-
sor, it is important that completed prefetches be themselves able to
spawn other prefetches. To facilitate this, the PB maintains a list
of requesting consumers (CN) with each block. When a
prefetched block arrives, each consumer on the list assumes the
role of a producer, probes the CT and potentially generates further
requests. An illustration of these steps can be obtained by substi-
tuting a completed prefetch for the completed load in figure 5(b).

In figure 5(d), a load instruction picks up a value from the prefetch
buffer. The PB and the data cache are accessed in parallel. A
cache miss will bring the block into the cache as usual. However,
the processor need not wait if the data is available in the PB.

4.3 Simplifying Prefetch Throttle and Control

Allowing the prefetch engine to run arbitrarily far ahead of the pro-
cessor is undesirable. First, if the prefetch engine gets too far
ahead, it may overwrite useful data before the processor has had a
chance to use it. We call this phenomenon earfyprefetching. Sec-
ond, prefetching is speculative, and by definition subject to mis-
speculation. Should the prefetch engine choose the wrong
prefetching path, when traversing a tree for instance, we would
like to keep the length of this excursion to a minimum.

Crafting a general solution that would throttle prefetching activity
seems complicated. First, we would probably need to keep a run-
ning log of prefetches made on behalf of every load so that later
program instances do not spawn prefetches that duplicate earlier
ones. Second, this mechanism would need to detect discrepancies
between per-load access sequences of the processor and those of
the prefetch engine, and be able to initiate proper recovery. Fortu-
nately, we have found that for our benchmarks, allowing the
prefetch engine to run arbitrarily far ahead is unnecessary. In fact,
prefetching a single instance ahead of a given load is sufficient.

To reason about why this might be so, we revisit our list example
from figure l(c), and consider the question of whether a prefetch
for 6b, triggered by the completion of 6a, should itself trigger a
prefetch for 6c. There are two basic cases to consider here, and the
answer for both is no. In the first case, there is enough work start-
ing with 6a to fully overlap with the miss latency of 6b. We there-
fore assume that there will be enough work to hide the latency of
6c if the prefetch is triggered by the completion of 6b. There. is no
advantage to triggering the prefetch any earlier. In the second
case, there is not enough work and the latency of 6b is only par-
tially hidden. Here, the program instruction and its intended
prefetch will complete at the same time, and it should make no dif-
ference which one triggers the prefetch for 6c.

Of course, the argument we just gave is not the whole story. It is
possible for different loop iterations to have different execution
latencies, and it is possible to “borrow” work from one iteration for

120

use in another. These situations may arise if the loop contains
some conditional code, in which case a recurrent load miss during
a short iteration can be hidden using work from a previous, longer
iteration. Another possibility is for structure elements to be laid
out sequentially and packed two or more to a cache line. Here, the
processor would incur a miss followed by one or more hits.
Prefetching only a single instance ahead prevents us from exploit-
ing situations like these.

Despite this drawback, single instance prefetching has many
advantages, not the least of which is a greatly simplified imple-
mentation. Enforcing single-instance prefetching can be done
using a counter attached to each prefetch request, and does not
require per-instruction prefetching state. Second, it issues a single
prefetch request per actual memory reference (allowing each
instruction to spawn prefetches for the next two instances will gen-
erate two requests for every actual load), a feature that keeps
prefetching overhead low and trims the bandwidth requirements of
the correlation table and prefetch buffer. Finally, it limits errant
prefetch chains to a length of one.

4.4 An Example: Prefetching a Binary Tree

The purpose of this section is to provide a qualitative feel for the
operation of dependence based prefetching. Specifically, we
examine how dependence-based prefetching handles an in-order
binary tree traversal (often used in reduction operations). In-order
tree traversal is often implemented recursively (depth first) using
two induction variables and three instructions: one fetches the left
child, the second restores the address of the current node after the
left traversal has finished, and the third fetches the right child using
the restored value. These instructions are assembled into four cor-
relations which are shown in figure 6(a): (11) left feeds left (con-
tinue traversal down a left path), (rl) right feeds left (begin
traversal down left path), (lr) left feeds right (only at leaf nodes),
and (sr) restore feeds right (going back up the tree).

Figure 6. Tree traversal andprefetching. (a) Four correlations
representing tree traversal. (b) Ideal tree prefetching (c)
Wavefront tree prefetchingperformed by our mechanism.

Traversal, and consequently ideal prefetching, proceeds in the
manner shown in figure 6(b), prefetches are shown next to the tree
and shaded to match the corresponding correlation. The prefetches
in this sequence are issued using only correlations (11), (rl), and
(sr), and prefetch left chains left-to-right and bottom-up. Our
mechanism issues prefetches using all correlations as shown in fig-
ure 6(c). The resulting effect is a left-to-right, top-down prefetch
order which we call wavefront.

Wavefront correctly prefetches down the tree but along the way
performs a lot of useless prefetches which correspond to traversal
back up the tree. This occurs because the left-feeds-right correla-
tion is assumed to hold at all levels of the tree, even though it is
only valid at the leaves. We expect the overall effect of wavefront
prefetching to be positive. Near the bottom of the tree, all nodes
are likely to fit in the prefetch buffer making order irrelevant. Near
the top, wavefront will produce some early prefetches. However,
these will not be followed past the first node. Wavefront prefetch-
ing should tolerate some latency for at least half the nodes (all the
left children), with added benefit near the leaves of the tree. A pos-
sible improvement to our scheme that would help in tree prefetch-
ing would allow it to unlearn or turn off the left-to-right
correlation, and eliminate these useless requests. We do not
explore such an improvement in this paper.

5 Evaluation

In this section, we provide experimental evidence of the effective-
ness of our proposed mechanism. Section 5.1 describes our exper-
imental framework, our benchmarks suite and our simulation
environment. In section 5.2, we use execution-driven functional
simulation to evaluate our mechanism’s ability to correctly predict
LDS accesses, measuring prediction accuracy as a function of
PPW and CT sizes. We use these to establish an accurate yet rea-
sonable predictor configuration. In section 5.3 we measure the
performance impact of dependence based prefetching using
detailed timing simulations, and compare the speedups against
other, simple prefetching mechanisms. Finally, in sections 5.4 and
5.5, we take a closer look at prefetching itself, and try to gain
insight into our performance numbers by measuring its efficiency,
overhead, and interaction with the memory system.

5.1 Experimental Framework

Our experiments were performed using the Olden pointer-intensive
benchmark suite [20]. The benchmarks were modified by hand to
execute on a single processor, and all CM-5 specific code was
removed. We compiled the programs for the MIPS-I architecture
using the GNU GCC 2.7.2 compiler with optimization flags -02
and -f&011-loops. Many of the benchmarks contain lengthy, allo-
cation-dominated initialization phases that are not sped up by
dependence-based prefetching; we did not optimize or discount
these in any way. Finally, the suggested input sets for some bench-
marks were changed to produce longer execution samples.

For our simulations, we use the SimpleScalar simulator [2]. We
model a 4-way superscalar, out-of-order processor with a conven-
tional five stage pipeline that allows a maximum of 32 in-flight
instructions. The branch unit uses a hybrid scheme with an 8K-
entry selector table choosing between the outcomes of an 8K-
entry, 10 bit history gshare scheme and an 8K-entry 2-bit predictor.
Targets’ are stored in 2K entry, 4-way BTB. The processor has 4
integer ALUs, 4 floating point adders, and single integer and float-
ing point multiply/divide units. ALU operations complete in sin-
gle cycle, multiply and divide have 3 and 20 cycle latencies.
Floating point operations take 2 cycles for addition, 4 for multipli-
cation and 24 for division. The adder is pipelined. The memory

121

system consists of 32KB, 32-byte line, 2-way set-associative first-
level instruction and data caches and a 512K, 64-byte line, 4-way
set associative shared second level cache. The first level data
cache can be accessed in a single cycle, the second level cache
latency is 12 cycles to the first word and an additional cycle for
each word thereafter. Latency to main memory is 70 cycles. The
processor uses 2 read/write ports and a 16 entry load-store queue.

Our prefetching configuration includes a 128 entry PPW, and a 256
entry CT. Prefetch requests wait on a 32 entry PRQ, and are ser-
viced only on cycles when either of the data cache ports is avail-
able. We use a 32 entry, IKB fully associative PB with 4 read/
request ports and an access latency of 1 cycle. The PB shares the
off-chip data bus with the instruction and data caches; contention
on the bus is modeled.

5.2 Address Prediction Accuracy

We measure the ability of our mechanism to capture dependences
and use them to predict future LDS addresses. At this point, we
are not interested in timing or even the utility of the prefetches
themselves. We simply count the fraction of all dynamic pointer
loads for which, at the time they were ready to issue, a correlation
was present in the CT that both: (i) named the pointer load as the
consumer, and (ii) would have produced the correct address. Fac-
tors that determine prediction accuracy are the maximum detect-
able load dependence distance, which prevents the detection and
prediction of pointer loads with longer dependences, and the work-
ing set size of the correlations themselves. The maximum detect-
able dependence distance is determined by the size of the PPW,
while the correlation working set that can be efficiently repre-
sented is given by the number of entries in the CT. This part of the
evaluation allows us to estimate the implementation resources that
should be devoted to these components in order to achieve reason-
able prediction accuracies. Figure 7 shows (a) address prediction
accuracy as a function of PPW size given an infinite CT, and (b) as
a function of CT size with a fixed 64-entry PPW. We evaluate a
fully-associative CT to eliminate aliasing effects.

100%

75%

50%

25%

w/i - .-
bh bis em3 hea mst per pow tre tsp vor

bh bis em3 hea mst per pow tre tsp vor

Figure 7. Address prediction accuracy. Percentage of
accurately predicted pointer-load addresses. (a) An infinite CT
and PPW sizes of 1.4.16, and 64 (black). (b) A 64-entry PPW
and CT sizes of 4.16.64 and 256 (black).

As we claimed earlier, a dependence-based representation has the
ability to predict pointer load addresses nearly perfectly. Once the
address generation process (producer) for a given pointer load has
been identified, addresses for all future instances of the same
instruction can be accurately pre-computed. The nearly perfect
prediction accuracies we achieve testify to the stability of the
dependence relationships. The relatively small structures required
to achieve high accuracy, 64 PPW entries and 256 correlations,
implies that the correlation working set is small.

5.3 Speedups

We now measure the performance impact of dependence based
prefetching. The base machine for the experiment is described in
section 5.1. We implement two flavors of the dependence-based
prefetching scheme. The first is the one we have been describing
all along. The second is augmented with a coarse confidence
mechanism that turns off prefetches if the corresponding static
load has hit in the first level data cache 8 or more times in a row.
These speedups are shown in as light and dark gray bars, respec-
tively in figure 8. We compare these speedups against a naive form
of prefetching, namely a system that has twice the on-chip data
cache and uses 64, rather than 32, byte lines. Speedups associated
with this double data cache configuration are shown in black.

25%
20%
15%
10%

5%

0%
bh bis em3 hea mst per pow tre tsp vor

Figure 8. Performance impact of dependence-based
prefetching. Speedups of dependence based prefetching
without (lt gray) and with (dk gray) a coarse confidence
scheme, compared to a system that prefetches by doubling the
line size, and thus overall size, of the data cache (black).

Dependence-based prefetching improves the performance of sev-
eral benchmarks significantly, while having a slight negative per-
formance impact in only one case, votonoi. The average speedup
for a 1KB prefetch buffer is lo%, significantly outperforming an
extra 32KB of data cache. More significant speedups are obtained
for health, em3d, mst, and perimeter.

Em3d, health, and mst are list-based programs with relatively poor
cache behavior. Dependence-based prefetching easily captures list
traversal behavior and overlaps the element access latencies with
the available work. Performance improvement for these bench-
marks is roughly proportional to the amount of work in a single
loop iteration. Mt’s lists are used to implement buckets in a hash
table and the loops that traverse them are tight and unable to hide
much latency. Performance improvement in mst is due to many
partially hidden misses. Each iteration of em3d’s main Ioop con-
tains a smaller loop of dependent floating point loads (data pointer
loads). This work in each iteration is sufficient to hide the latency
of the recurrent loop induction access, and additional benefit is
gained by prefetching the floating point data attached to each node.
The outer loop in health contains quite a bit of computation, but it

122

is the tight inner loops that are responsible for the majority of
misses. The benefit we see in this program is due to the terrible a
priori miss rate and a high dose of partially covered latencies.

Perimeter uses a quadtree and benefits from the wavefront
prefetching effect explained in section 4.4. Bisort, treeadd and tsp
use binary trees as their primary data structure, and also benefit
from the same effect. Perimeter sees a larger improvement than
the others because more work is available for overlapping at each
recursive step. Treeadd has so little work at each recursive step, in
fact, that the only benefit comes from the wavefront effect near the
leaves of the tree. When following the correct traversal, the pro-
cessor is issuing requests as fast as the prefetch engine. Bh and
power are multiway-tree based programs, but both start out with
extremely good cache behavior.

Voronoi uses pointers, but most of its most of its cache misses are
caused by array and scalar loads. Most prefetches issued during
execution are useless and, combined with a low initial miss rate,
contribute little other than bus contention. The resulting 2% slow-
down prompted our experiment with the confidence mechanism.
The addition of confidence eliminates these unnecessary
prefetches and lifts our impact on voronoi back into the positive
range. However, it also eliminates most of the useful prefetches on
treeadd, cutting our gains on that benchmark. Experimentation
with more elaborate confidence mechanisms is warranted, but is
outside the scope of this work.

5.4 A Closer Look at Prefetching

In this section, we attempt to gain some insights into the perfor-
mance of dependence-based prefetching by taking a closer look at
prefetching activity. We begin by presenting a breakdown of all
cache blocks prefetched by our mechanism along two axes: block
origin (i.e., level in the memory hierarchy) and block utility. These
breakdowns are shown per benchmark in figure 9. The bar on the
left represents blocks that were resident in the first level cache, the
one on the right those that were fetched from the second level
cache and potentially main memory. The bottom, darker, portion
of each bar represents the fraction of blocks that were used. The
combined heights of the two bars add up to lOO%, but we split
them for clarity,

100%

75%

50%

25%

0%
bh bis em3 hea mst per pow tre tsp vor

Figure 9. Prefetched block breakdown. Blocks prefetched from
the jirst level (left) and second level (right) caches. Useful
blocks (bottom, dark), and unused blocks (top, light).

The dark portion of the bars on the right represents the useful work
performed by dependence based prefetching. This is the fraction of
blocks that were prefetched from the second level cache and used.
This category accounts for nearly half of all prefetched blocks in
all benchmarks except for treeadd, and dominates those bench-

marks for which the greatest performance improvement was
observed, em3d, health, mst, and perimeter. The fact this category
is so dominant means that dependence based prefetching is both
accurate and efficient. The only application for which this block
distribution does not hold true is treeadd, which has very little
work at each recursive step. The result is that, except near the bot-
tom of the tree, the prefetch engine can only repeat the work of the
processor, it cannot prefetch ahead.

The left bar in each series represents the prefetching overhead in
some sense. These are the prefetched blocks that were found in the
first level cache and copied into the prefetch buffer. These blocks
are not entirely useless, since once in the prefetch buffer they may
spawn other more useful prefetches. Moving cache blocks into the
prefetch buffer has two other positive effects which are illustrated
by the fact that these blocks are actually used via the buffer. One
possibility is that the block may have been subsequently displaced
from the first level cache, in which case the prefetch buffer is
assuming the role ofpointer-load victim buffer. The second possi-
bility is that the prefetch buffer was used because the data cache
ports were busy, in which case the prefetch buffer acts as a band-
width amplifier. We do not separate the contribution of the two
effects here.

5.5 Memory System Performance Metrics

From the memory system standpoint, we quantify both the (hope-
fully) positive aspects and the overhead in the form of additional
bandwidth consumed. We begin by measuring the latency toler-
ated by prefetched blocks. Here, data cache miss rates do not tell
the whole story since the latency of many pointer loads, as well as
other loads that access on pointer load cache lines, may be partially
hidden. Instead, we present two more telling metrics.

Prefetch coverage measures the fraction of would-be load misses
serviced by the prefetch mechanism. The height of each bar in fig-
ure 10(a) is the sum of the percentage of would-be load misses
whose latency was fully tolerated by prefetching (dark, bottom
portion), and those whose latency was only partially hidden (light,
top portion). For each benchmark, the bar on the left represents
pointer loads, and the bar on the right all loads. Since the bar on
the right samples more loads than the one on the left, we may
expect its overall height to be shorter. However, if enough non-
pointer loads benefit from prefetching, by virtue of being on the
same cache line as a pointer target for instance, then the effective-
ness for loads in general will be higher than for pointer loads in
particular. As we predicted in section 3.2, the short dependence
distances do not provide much work for overlapping, and conse-
quently, many load misses are only partially masked. However, for
the benchmarks that showed the greatest speedups, as many as
75% of all would-be load misses saw some latency reduction.

Prefetch coverage is only a histogram; it does not say how much
latency was tolerated for each serviced load nor what that latency
is in relation to the other loads. For this reason, we also measure
reduction average load wait time, which represents the overall
improvement in memory system performance. Normalized aver-
age load latencies are shown in figure 10(b), again with pointer
loads on the left (in gray) and all loads on the right (black). Not

123

50%
25%

0%

110%

100%

90%

80%
70%
60%

bh bis em3 hea mst per pow tre tsp vor

bh bis em3 hea mst per pow tre tsP vor

Figure 10. Memory performance improvement metrics. (a)
Percentage of would-be load misses serviced by the prefetch
bujfeev. Fully hidden misses (bottom of each bar), partially
hidden misses (top), pointer loads (left bar) and all loads (right
bar). (b) Normalized average latency for pointer loads (left,
gray) and all loads (right, black).

coincidentally, the sharpest improvements correspond to those
benchmarks for which dependence based prefetching performs
best. For these, the average load wait time was cut by 25%. On
several others, bisort and tsp, a significant decrease in load
response time is not translated into a much higher execution effi-
ciency. For these benchmarks, most of the useful prefetches are
associated with traversal and data loads that do not execute along
the critical path. Voronoi is the only program that experiences an
increase in load latency.

We quantify the overhead of dependence-based prefetching in
terms of increase in the number of accesses to the on chip and sec-
ond level data caches, as well as to main memory. These increases
are shown in figure 11. The dominating overhead, although it is
certainly tolerable, is the increased bandwidth demand on the first
level data cache ports. This increase, an average of 15% across the
benchmarks, is a product of our decision to check prefetch requests
for residence in the first level cache, before sending them off-chip.
This policy greatly reduces the turn-around time for prefetch
requests that are already cache resident, and more importantly,
allows dependent useful requests to issue much more quickly. We
reiterate that this overhead is not seen by the processor since the
ports are used for prefetching only when they are otherwise idle.

bh bis em3 hea mst per pow tre tsp vor

Figure Il. Memory bandwidth overhead Memory bandwidth
usage increases: jirst level data cache (It gray), second level
cache (dk gray) and main memory (black).

Another benefit of checking blocks for data cache residence before
issuing a request off-chip is a substantial reduction in second-level
cache bus traffic. The increase we observe in second level cache

accesses, an average of 4%, is slight and reinforces our belief that
our mechanism is very efficient and accurate. The lack of a more
substantial increase means that most prefetches are indeed useful
and simply take the place of subsequent reads resulting from
would-be first level misses. The 4% increase and the 2% increase
in memory bus traffic is due to our mechanism’s inability to pre-
cisely mimic the traversal of non-linear data structures, such as the
ones in bh and voronoi, and the resulting early prefetches. These
figures show that even in the case of serialized latencies, memory
bandwidth can be readily traded off for latency.

6 Related Work

Much work has been done in the area of data prefetching, both in
software and hardware. Compiler optimizations that improve data
locality [131 like blocking and loop interchange can greatly reduce
the need for prefetching. However, these fundamentally rely on
compile-time knowledge of the data set layout and its interaction
with the cache. Linked structures are not often laid out by the
compiler, and are incompatible with these optimizations. Software
pipelining [lo] tolerates high latency loads in loops by increasing
the distance between the load and instructions that use its value.
While not requiring specific layout information, software pipelin-
ing relies on the ability to quickly generate addresses for arbitrary
structure elements. LDS access undermines this critical require-
ment. General purpose software prefetching [17][1 l] tolerates
load latency by scheduling a matching speculative non-faulting
load [21] far in advance. Pointer chasing requires that the address
for a speculative LDS load be generated using a chain of depen-
dent loads. The critical path of this chain and its relationship to the
original load greatly limits the scheduling scope of the prefetch,
and consequently, the amount of latency that can be hidden.

Luk and Mowry [12] proposed and evaluated a greedy compiler
algorithm for scheduling software prefetches for linked data struc-
tures. They showed this scheme to be effective for certain pro-
grams, citing instruction overhead and the generation of useless
prefetches as performance degradation factors for others. Their
algorithm uses type information to identify recurrent pointer
accesses, including those accessed via an?lys, and may have advan-
tages in tailoring a prefetch schedule to a particular traversal. Our
hardware scheme, on the other hand, does not incur instruction
overhead, and can prefetch non-pointer data that resides in linked
structures. In addition, it provides dynamic detection and suppres-
sion of unnecessary prefetches. We expect that this same mecha-
nism can be integrated with a compiler-based prefetch-generation
scheme to improve resource consumption.

Luk and Mowry [121 presented a case for history-pointer prefetch-
ing, which augments linked structure nodes with prefetching
pointer fields, and data-linearization, in which LDS are program-
matically laid out at runtime to allow sequential prefetch machin-
ery to capture their traversal. While these schemes have potential
for speedup, they also incur serious overheads in the form of runt-
ime storage and additional code needed to maintain history point-
ers and linear data layout, respectively. Both are difficult to
automate.

124

Another class of software solutions to this problem utilizes cache-
conscious data placement [5], the runtime allocation or reorganiza-
tion of LDS nodes. Clustering techniques pack adjacent LDS
nodes into a single (if possible) or consecutive cache lines and
improve the spatial locality and arithmetic regularity of LDS
access. Coloring techniques eliminate conflicts that occur in com-
mon traversals. Data-placement techniques can dramatically
improve performance, even when little or no work is available for
latency overlapping. However, they incur a potentially high re-
organization overhead, making them mostly suitable for relatively
static structures. In addition, they are not predictive and do not
hide latency resulting from capacity misses. Finally, they require
knowledge of the cache parameters. Dependence-based prefetch-
ing will mask capacity misses when other work is available, and
incurs no explicit overhead.

A similar volume of research has been done in hardware prefetch-
ing [3], and dynamic techniques for address prediction [7]. Most
of these, such as stream buffers [9], reference prediction table
(RPT)[4] and the subsequent Tango [19] analyze address
sequences for single instructions arithmetically, and are designed
to deal primarily with strided access patterns. Joseph and Grun-
wald [8] describe Markov predictors which represent cache miss
sequences in the form of a probabilistic transition table. Markov
predictors are capable of capturing complex patterns, but are none-
theless address based, and require storage proportional to the num-
ber of distinct entries in the miss stream.

Mehrotra and Harrison [14] proposed simple extensions to the
RPT aimed at capturing recurrent access patterns. They aug-
mented the RPT with a Recurrence Recognition Unit (RRU), a
finite state machine able to recognize single level recurrences, such
as the ones used in list traversal. The RRU is an efficiently imple-
mented mechanism that leverages structures used for arithmetic
prefetching, and captures list access, the most common LDS tra-
versal. Like the RPT, the RRU analyzes address streams on a per-
instruction basis, and does not capture dependence between multi-
ple instructions that arise in tree and graph traversals. Depen-
dence-based prefetching can capture and prefetch all pointer loads.
However, it has a potentially higher implementation cost.

The use of data dependence between instructions as an information
primitive and unit of prediction was introduced by Moshovos,
Breach, Vijaykumar and Sohi [151, and later refined by Chrysos
and Emer [6]. In the initial work, dependence prediction was used
to synchronize loads, avoiding misspeculation due to unresolved
dependences. Tyson and Austin [23] and Moshovos and Sohi [161
broadened the scope of use of dependence information. They pro-
pose to dynamically and transparently convert address-based activ-
ity to dependence-based activity, to reduce memory
communication latency. We are not aware of any work that uses
instruction dependence speculation to prefetch.

Other related works include the static access/execute decoupling
proposed by Smith [22] and subsequent dynamic dependence-
based decoupling [181. Dependence-based prefetching specula-
tively decouples the LDS traversal portion from the remainder of
the program, but does so selectively based on address dependence.

7 Summary and Future Directions

We introduce a dependence based mechanism that dynamically
captures and represents pointer access behavior, and uses the rep-
resentation for prefetching linked data structures (LDS). Depen-
dence-based analysis does not rely on regularities in the address
stream, capturing address generation activity explicitly. As a
result, it successfully predicts LDS access sequences that exhibit
little or no arithmetic patterns. We show that a dependence based
mechanism can capture and correctly predict nearly all of the
accesses performed by an actual LDS traversal. A prefetch scheme
using this mechanism can boost performance of pointer intensive
programs by 1% to 25%. We make the following contributions:

(i) We characterize pointer loads and show that, in a suite of
pointer-based programs, these are responsible for a sig-
nificant and often disproportionate fraction of the data
cache misses. We categorize pointer loads into data, tra-
versal, and recurrent loads and describe how the latency
associated with members of each category may be toler-
ated.

(ii) We present a new dependence-based mechanism that can
correctly predict future LDS accesses by capturing and
mimicking the LDS traversal behavior of the executing
program. Our scheme is based on the identification of
dependence relationships between loads that produce
LDS element addresses, and loads that consume them.
We show that these dependence relationships are stable
and have a small working set, leading to high address pre-
diction accuracies.

(iii) We show that a dependence-based representation enables
aggressive, greedy prefetching of linked structures.
While not strictly overcoming pointer chasing, this mode
of execution can overlap a large fraction of the available
work with serialized latencies.

The implementation we propose is a single point in an unexplored
design space. Many other designs are possible, for example ones
that prefetch directly into the cache. There is potential work in the
interpretation of the dependence graphs and prioritization of
prefetch operations. The CT may be used to actively classify load
instructions according to the number and type of outgoing depen-
dences. This classification scheme can drive prefetching deci-
sions, as well as scheduling policies. In section 4.4, we described
the problems associated with tree traversal, and outlined a potential
solution involving the dynamic disabling of one dependence. A
dynamic implementation of such a mechanism, or an extended ver-
sion that can prune arbitrary prefetch requests and improve
resource contention and PB pollution, is a possibility as is the
design of an efficient scheme to allow the prefetch engine to run
further ahead.

Future work we find most exciting, however, deals with the explo-
ration of novel microarchitectural techniques enabled by dynami-
cally collected dependence information. Capturing linked data
structure access and using it for prefetching is a first step in this
direction. Pointer dependences are easy to find since the addresses
flow from producer to eventual consumer, unchanged through reg-

125

isters and spills to and from memory. There are other data struc-
tures, sparse matrices and index trees for instance, whose traversal
does not yield address sequences with arithmetic properties. The
nature and organization of mechanisms that can capture and effi-
ciently represent and exploit these access behaviors is an open
question. Finally, other uses of dependence information may be
possible, in areas unrelated to prefetching in particular or memory
system management in general.

Acknowledgments

The authors would like to thank Jim Smith, Mark Hill, Doug
Burger, and Milo Martin for their comments on early versions of
this paper, and the anonymous referees for their careful reviews
and suggestions. Martin Carlisle supplied the Olden benchmarks.

This work was supported in part by NSF grant MIP-9505853, by
U.S. Army Intelligence Center and Fort Huachuca under contract
DABT63-95-C-0127 and ARPA order D346, and by a donation
from Intel. The views and conclusions presented are those of the
authors and do not necessarily represent the official policies or
endorsements, either expressed or implied, of the U.S. Army Intel-
ligence Center and Fort Huachuca or the U.S. Government.

References

VI

PI

[31

[41

[51

161

[71

PI

[91

J. Baer and T. Chen. An effective on-chip preloading scheme
to reduce data access penalty. In Proceedings of the 1991
Conference on Supercomputing, pages 176-l 86,199l.
D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar toolset. Technical Report
CS-TR-96-1308, University of Wisconsin-Madison, Jul.
1996.
T. Chen and J. Baer. A performance study of software and
hardware prefetching techniques. In Proceedings of the 21st
Annual International Symposium on Computer Architecture,
pages 223-232, Apr. 1994.
T. Chen and J. Baer. Effective hardware based data prefetch-
ing for high performance processors. IEEE Transactions on
Computers, 44:6O!J-623, May. 1995.
T. Chilimbi, J. Larus, and M. Hill. Improving pointer-based
codes through cache-concious data placement. Technical Re-
port CS-TR-98-1365, University of Wisconsin, Madison,
Mar. 1998.
G. Chrysos and J. Emer. Memory dependence prediction us-
ing store sets. In Proceedings of the 25th Annual Internation-
al Symposium on Computer Architecture, pages 142-153,
Jun. 1998.
J. Gonzalez and A. Gonzalez. Speculative execution via ad-
dress prediction and data prefetching. In Proceedings of the
I Ith International Conference on Supercomputing, pages
196-203, Jun. 1997.
D. Joseph and D. Grunwald. Prefetching using markov pre-
dictors. In Proceedings of the 24th Annual International Sym-
posium on Computer Architecture, pages 252-263, Jun.
1997.
N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. In Proceedings of the 17th International Symposium

on Computer Architecture, pages 364-373, Jul. 1990.
[lo] M. Lam. Software pipelining: an efficient scheduling tech-

nique for vliw machines. In Proceedings of the SIGPLAN’SS
Conference on Programming Language Design and Imple-
mentation, pages 318-328, Jun. 1988.

[1 I] M. Lipasti, W. Schmidt, S. Kunkel, and R. Roediger. Spaid:
Software prefetching in pointer and call intensive environ-
ments. In Proceedings ofthe 28th Annual International Sym-
posium on Microarchitecture, pages 23 l-236, Nov. 1995.

[121 C.-K. Luk and T. Mowry. Compiler based prefetching for re-
cursive data structures. In Proceedings of the 7th Internation-
al Conference on Architectural Support for Programming
Languages and Operating Systems, pages 222-233, Oct.
1996.

[131 K. McKinley, S. Carr, and C.-W. Tseng. Improving data lo-
cality with loop transformations. ACM Transactions on Pro-
gramming Languages and Systems, 18(4):424-453, Jul.
1996.

[141 S. Mehrotra and L. Harrison. Examination of a memory ac-
cess classification scheme for pointer-intensive and numeric
program. In Proceedings of the 10th International Confer-
ence on Supercomputing, pages 133-l 39, May 1996.

[151 A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dy-
namic speculation and synchronization of data dependences.
In Proceedings of the 24th Annual International Symposium
on Computer Architecture, pages 18 l-l 93, Jun. 1997.

[161 A. Moshovos and G. Sohi. Streamlining inter-operation com-
munication via data dependence prediction. In Proceeding of
the 30th Annual Internation Symposium on Microarchitec-
ture, pages 235-245, Dec. 1997.

[171 T. Mowry, M. Lam, and A. Gupta. Design and evaluation of
a compiler algorithm for prefetching. In Proceedings of the
5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 62-
73, Oct. 1992.

[181 S. Palacharla and J. Smith. Complexity-effective superscalar
processors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 206-2 18, Jul.
1997.

[19] S. Pinter and A. Yoaz. Tango: A hardware-based data
prefetching technique for superscalar processors. In Proceed-
ings of the 29th Annual International Symposium on Mi-
croarchitecture, pages 214-225, Dec. 1996.

[20] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Support-
ing dynamic data structures on distributed memory machines.
ACM Transactions on Programming Languages and Sys-
tems, Mar. 1995.

[21] A. Rogers and K. Li. Software support for speculative loads.
In Proceedings of the 5th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 32-50, Oct. 1992.

[22] J. Smith. Decoupled access/execute computer architecture. In
Proceedings of the 9th Annual International Symposium on
Computer Architecture, Jul. 1982.

[23] G. Tyson and T. Austin. Improving the accuracy and perfor-
mance of memory communication through renaming. In Pro-
ceeding of the 30th Annual Intemation Symposium on
Microarchitecture, pages 2 18-227, Dec. 1997.

126

