
CSCI 1321 September 1, 2005

Slide 1

Administrivia

• Updated syllabus (minor wording changes).

• If problems with Linux accounts (old or new), talk to me and/or send mail to

CSAdmin list.

• Look online for updated reading assignment later today.

Slide 2

“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.



CSCI 1321 September 1, 2005

Slide 3

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.

Slide 4

What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• Public interface — attributes and methods visible from outside the class.



CSCI 1321 September 1, 2005

Slide 5

Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).

Slide 6

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in

turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if Triangle is a subclass of Shape,

can use a Triangle anywhere we need a Shape.



CSCI 1321 September 1, 2005

Slide 7

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Shapes should work on Triangles, Circles, . . .

Slide 8

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software

analysis and design.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Subclass points to its superclass (represents the path to follow to figure

out inheritance).



CSCI 1321 September 1, 2005

Slide 9

Compiling and Running Programs — Java Versus C/C++

• With C/C++, your program (“source code”) is transformed by a compiler

into . . .

“object code” (different for different processors), which is combined with

library object code to produce . . .

an “executable” (different for different operating systems) that can be run like

other applications.

• With Java, your program (source code) is transformed by a compiler into . . .

“byte code” (same on any processor), which is executed by . . .

“Java virtual machine” (which has access to library byte code).

Slide 10

Sample Programs

• Let’s write a “hello world” program . . .



CSCI 1321 September 1, 2005

Slide 11

Minute Essay

• Was there anything today that was particularly unclear?


