
CSCI 1321 September 29, 2005

Slide 1

Administrivia

• Reminder: Homework 2 design due ASAP, code today. No penalty if in by

5pm tomorrow. Remember that for the design phase you just have to send

me e-mail saying ”it’s ready”, but for the code phase you need to actually

send me all your .java files (plus any other files that would be needed but that

I wouldn’t have — but you probably don’t have any of those yet).

(A bit more about this assignment in the next slide.)

• Homework 3 should be on the Web late today or early tomorrow. Probable

due date is next Thursday, or the following Tuesday. This is the assignment

where you really start writing your game.

Slide 2

Homework 2 Code

• Eclipse will suggest adding a variable called serialVersionUID to

some of your classes. Do that. (Notice there’s one of these in some of the

provided code.) Value can be anything, so long as it’s different for each class.

• Notice that x/y coordinates of framework are opposite of row/column.

getSize() in screen class should return width by height.

• To confirm that your code works:

– Start the game, and verify that the playing field is what you defined

(dimensions, plus appearance of blocks — for now, I recommend solid

colors).

– Try running the screen editor (directions in “project description” document).

If it comes up, and shows all the kinds of blocks you defined, all is well.



CSCI 1321 September 29, 2005

Slide 3

Arrays — Review

• Arrays in Java are objects, with length field recording actual length (can’t

change it, but can use it in loops, etc.).

• Access is like in C, but safer.

• Multidimensional arrays are arrays of arrays, but with a little “syntactic sugar”

to make it easier to define rectangular ones. If we declare

int[][] ints = new int[4][6]

we can get back the dimensions with int.length (4) and

int[0].length (6). (Can’t remember which is which? Write a little test

program.)

Slide 4

Sorting and Searching Arrays

• A common thing to do with arrays is sort them. (Remember this from PAD I?)

• Various algorithms for sorting and searching. Some fast, some slow; some

simple, some complex. Decide which to use based on considerations of

simplicity versus speed.

• “Speed”? Yes, but expressed as order of magnitude (“big-oh notation”).



CSCI 1321 September 29, 2005

Slide 5

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 6

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN 2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 September 29, 2005

Slide 7

Simple (but Slow) Sorts

• Bubble sort. (First pass goes through the whole array, swapping consecutive

elements if out of order, so largest element bubbles to the end. Next pass

goes through all elements but last. And so forth.)

• Selection sort. (First pass finds largest element and puts it at end. Next pass

finds next-to-largest element and puts it at next-to-end. And so forth.)

• Insertion sort. (First pass inserts second element into list of first element.

Next pass inserts third element into list of first two elements. And so forth.)

• All of these are O(N2). And there are others . . .

Slide 8

Other Sorts

• Quicksort (to be discussed later). O(N logN).

• Mergesort (to be discussed later). O(N logN).

• Many others . . .



CSCI 1321 September 29, 2005

Slide 9

Searches

• Sequential search. O(N).

• Binary search. O(N logN).

Slide 10

Sorting and Searching Arrays in Java

• Arrays class has some useful methods.

• One thing that’s nice about Java is “polymorphic sorting”; can sort objects of

any class that implements Comparable.



CSCI 1321 September 29, 2005

Slide 11

Minute Essay

• None — quiz.


