
CSCI 1321 December 6, 2005

Slide 1

Administrivia

• All homeworks up through Homework 6 should be turned in by now, but I’ll

accept them (probably at reduced credit) through Friday at 5pm.

• Our final is December 14 at 8:30am. A short review sheet is on the Web.

Midterms, or at least sample solutions, to be available by Friday.

• Homework 7 and Homework 8 are on the Web, due at the time of the final —

no extensions. You’re only required to do one of them, but you can do both for

extra points. Notice that Homework 7 is worth more points; this means that

anyone doing this assignment gets extra points.

Slide 2

Networking Basics

• Inter-computer communication based on layered approach and “protocols”:

– Application level — HTTP, FTP, telnet, SMTP, POP, IMAP, NTP, etc., etc.

– Transport level — TCP (Transmission Control Protocol), UDP (User

Datagram Protocol).

– Network level — IP (Internet Protocol — addressing, routing of packets).

– Link level — device drivers, etc.

• Messages are routed to

– A machine (“host”), identified by IPA or name.

– A process, identified by “port number” (16 bits). 0 — 1023 are “well-known

ports”, others available for applications

CSCI 1321 December 6, 2005

Slide 3

Networking Basics — TCP and UDP

• UDP — independent messages, no guarantees about reliability or message

order — analogous to (snailmail) letter.

• TCP — point-to-point channel, guarantees reliability and message order —

analogous to phone call. Endpoints called “sockets”.

Slide 4

Networking in Java

• Classes for communicating at application level — e.g., URL (“show URL”

example).

• Classes for communicating at network level:

– TCP — Socket, ServerSocket.

– UDP — Datagram*.

• RMI (Remote Method Invocation).

CSCI 1321 December 6, 2005

Slide 5

Networking in Java — Sockets

• Client/server model:

– Server sets up “server socket” specifying port number, then waits to

accept connections. Connection generates socket.

– Client connects to server by giving name/IPA and port number —

generates a socket.

– On each side, get input/output streams for socket.

– Very simple example in I/O example from last time.

Slide 6

Networking in Java — RMI

• Motivation — for client/server applications, can be annoying to have to design

your own protocol.

• Instead, idea is to define “remote objects” that can be treated (at program

level) like any other objects — invoke methods.

• Typical use in client/server program:

– Server creates some remote objects and “registers” them.

– Clients look up server’s remote objects and invoke their methods.

– Both sides can pass around references to other remote objects.

• Dynamic code loading possible too

CSCI 1321 December 6, 2005

Slide 7

Networking in Java — RMI, Quick How-To

• Define a class for remote objects:

– Define interface that extends Remote

– Define class that implements that interface, extends a Java ”remote object

class. Can also include other methods, only available locally.

– Write code using classes — if using as remote object, reference interface;

otherwise can reference class.

• Compile and execute:

– Compile as usual, emphplus run rmi to generate ”stubs” to be used in

communicating with remote objects as remote objects.

– “Make classes network accessibl.

– Start rmiregistry.

– Run server and clients as usual.

Slide 8

Threads in Java

• Thread class provides basic functionality. To start a new thread, make a

Thread object and call its start method. Two choices:

– Create a Thread with an object that implements Runnable — run

method has code to execute.

– Define a subclass of Thread that has a run method with code to

execute.

• Inter-thread interaction based on “monitors” (see o/s or parallel-programming

textbooks):

– Every object (and every class) has a lock.

– synchronized methods must acquire lock — so only one at a time

can run.

– wait gives up the lock and sleeps; notify and notifyAll wake

up one/all sleeping thread(s).

CSCI 1321 December 6, 2005

Slide 9

• Lots of new stuff in Java 1.5 / 5.0 (java.util.concurrent package).

Slide 10

Examples

• For examples of multithreading for performance, multithreading with wait

and notify, refer to my Web site for CSCI 3366 (parallel programming

course).

• Formerly many uses for multithreading in GUIs (e.g., animation), but now

most can be accomplished with new features of GUI class (e.g., timers).

• Example of socket communication and threading for concurrency — chat

example.

CSCI 1321 December 6, 2005

Slide 11

Course Recap — What Did We Do?

• Java and object-oriented programming — polymorphism, inheritance, etc.

• Basic ADTs — stacks, queues, trees (sorted and heaps); different

implementations (arrays versus dynamic data structures using references).

• Recursion review.

• Tour of the Java libraries — GUIs, graphics, exceptions, I/O; a very little about

threads and networking.

• A fairly large programming project involving using someone else’s code.

• To get a sense of what you learned — compare what you knew in August to

what you know now.

Slide 12

Minute Essay

• None — sign in.

