
1

Recursion, Patterns, and Let

10-20-2004

2

Opening Discussion

■ Who can describe the data types that we
discussed in ML last time? How do we write
functions in ML?

■ Functions for cube and “doubling” a string.
Remember the operators and other details
of ML.

3

References to External
“Variables”

■ In ML, if you define a function that refers to
an outside value name, it uses the value
bound to the name at the time the function is
defined.

■ Note that this means the order in which
things are defined can be important. Things
must be defined before you can use them,
like in C.

4

Recursion

■ Recursion in ML is done just like in Scheme
and because they are both functional it is
used a lot.

■ I'm not going to specifically focus on
recursion though because you now have a
lot of experience with it from Scheme.

5

Mutual Recursion

■ The idea that something must be defined
before you can use it causes problems for
mutual recursion. That is when A calls B
and B calls A.

■ In C you use function signatures to declare
things before you define them.

■ In ML we can use a keyword “and” along
with fun.
 fun <def1>
 and <def2>
 ...
 and <defN>;

6

Patterns

■ At the end of last class I showed you the
concept of a pattern in ML. A function can
have multiple different definitions where
each definition depends on matching a
certain pattern in the argument(s).

■ A pattern is either a constant or has some
type of structure. It can't be a boolean
expression though.

■ The multiple definitions are separated by “|”.
■ It is possible that the patterns don't match all

possibilities which gives a warning.

7

“as” in Patterns

■ We saw how a pattern can be a list.
Sometimes it is nice to have a value in two
different ways.

■ We can do this with “as” so in place of the
pattern we put <identifier> as <pattern>.

■ So now the argument as a whole goes by
the first identifier or we can use the pattern
pieces for it.

■ Let's look at how this works using a merge
function.

8

Anonymous Variables and Pattern
Details

■ You can also use a “_” to specify a part of a
pattern that you don't care about. You do
this is some argument isn't needed for a
particular implementation.

■ You can't repeat the same identifier twice in
a single pattern.

■ Patterns can include parentheses to group
sub-tuples and sublists. Note that even for
sublists you use parentheses because you
are just setting order of operation.

■ Can't use @, math ops, or reals in patterns.

9

Let

■ Just like Scheme, it is frequently helpful to
be able to bind names to values in a
function in ML and we can do this with let.

■ Note that the semicolons can optionally
follow vals.

let
val <var1>=<exp1>
val <var2>=<exp2>
...

in
<expression>

end

10

Patterns in val

■ When a val gets the value of a function call,
we can also use patterns on the left side of a
val statement to take apart tuples or lists.

■ This is most useful if a function returns a
tuple. To illustrate this, let's write split and
mergeSort functions.

■ Here again we see how patterns prevent us
from using hd and tl or even using the #i
syntax for getting parts of tuples.

11

Minute Essay

■ Using patterns, write a function that returns
the length of a list.

■ Remember that assignment #5 is due on
Friday.

