
1

Defining New Types in ML

10-29-2004

2

Opening Discussion

■ Name some common higher order functions.
How do we curry functions in ML?

■ In your assignment using a higher order
function could be quite helpful if you wanted
to try to keep things general. How would you
do that?

■ How do you define new types in other
languages you know? How did we
approximate this in Scheme?

3

Known Aspects of ML Typing

■ So far we know a number of things about the
ML typing system. There are a number of
basic types: int, real, string, char, and bool.

■ We can build product types or tuples that
group other types together in a fixed form.
Denoted with *.

■ There are function types that go from one
type to another. Denoted as ->.

■ We have also seen two “type constructors”:
lists and options. These can be made from
any type.

4

Type Definitions

■ The first way we can create types in ML is
simply to give a new name to an existing
type. We do this with the declaration type.
 type <ident> = <type expression>

■ This is very similar to a typedef in C or C++.
■ It can help prevent us from having to type in

long types. For example, the following could
be used for your items in some situations.
 type item = string * int * real * real;

■ Equality checks don't care about this
“declared” type.

5

Parameterized Type Definitions

■ A parameterized type definition gives you
flexibility.
 type (<type parameter list>) <ident> = <type

expression>
■ The parameter list is a comma separated list

of type variables. Remember, type variables
begin with '.

■ Your book uses the example of a
mathematical map. It's really a list of tuples
with a domain and range type.
 type ('d,'r) mapping = ('d * 'r) list;

6

Datatypes

■ We can define our own new types with the
datatype keyword. This is followed by a
name (typically starting lowercase) called
the type constructor which equals a list of
data constructors (typically starting
uppercase).

■ For example, a simple example might be as
follows:
 datatype fruit = Apple | Pear | Grape;

■ This says that something of type fruit is
either an Apple, Pear, or Grape.

7

More on Basics of Datatypes

■ We can use these types just as we would
other types. For example we could write the
function
 fun isApple(x) = (x=Apple);

■ Note that this simple use of a datatype is
like an enum in C except that it is typesafe.
(enums in C are actually ints and for that
reason aren't typesafe.)

■ The type fruit in this example is not an
abbreviation for anything, it is a completely
new type.

8

Constructor Expressions in
Datatype Definitions

■ The full form of a datatype declaration is as
follows:
 datatype (<type parameter list>) <ident> =

<constructor expr1> | <constructor expr2> | ... |
<constructor exprN>

■ The constructor expression has the form
<constructor name> with an optional “of
<type>”. The of provides a parameter
similar to that for an exception.

■ Like an exception, the constructor wraps the
value and we pull it out by matching a
pattern.

9

Datatypes as Unions

■ A datatype can give us something similar to
a union in C where something can be one
type or another.

■ You book uses the example of a type that is
either a pair or a single.
 datatype ('a,'b) element = P of 'a * 'b | S of 'a;

■ We can use patterns to determine if the
argument is of type P or S and treat it
accordingly.

10

Recursive Datatypes

■ Datatypes can also provide us with recursive
types because the type following of is a type
expression can be the type constructor we
are building.

■ For example, a general binary tree could
have the declaration
 datatype 'label btree = Empty | Node of 'label *

'label btree * 'label btree;
■ Note that the data constructor Empty

basically serves the role of a null pointer in
other languages.

11

Mutually Recursive Datatypes

■ If you remember back, we said that mutually
recursive functions (where foo1 calls foo2
and foo2 calls foo1) can be defined in one
fun statement with an and between them.
The same thing can happen for mutually
recursive data types where type1 includes
type2 and type2 includes type1.

■ Use the datatype keyword once and put an
“and” between the definitions.

12

Code

■ You should note that we could easily define
the option type ourselves with a datatype.

■ Also note that datatypes don't give us any
more fundamental power, but they do give
us more expressivity and make things safer
with better type checking.

■ Let's write some code that uses datatypes to
store things in ML. Perhaps we could start
building an implementation of a set type like
what we had done in Scheme.

13

Minute Essay

■ What are your thoughts on datatypes in ML?
 They are similar to some constructs in other
languages, yet likely different than anything
you have seen in any other language.

■ Remember that assignment #6 is due today.

