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Abstract

Congestion games are a well-studied class of games
that has been used to model real-world systems
such as Internet routing. In many congestion
games, each player’s number of strategies can be
exponential in the natural description of the game.
Most existing algorithms for game theoretic com-
putation, from computing expected utilities and
best responses to finding Nash equilibrium and
other solution concepts, all involve enumeration of
pure strategies. As a result, such algorithms would
take exponential time on these congestion games.
In this work, we study congestion games in which
each player’s strategy space can be described com-
pactly using a set of linear constraints. For instance,
network congestion games naturally fall into this
subclass as each player’s strategy can be described
by a set of flow constraints. We show that we
can represent any mixed strategy compactly using
marginals which specify the probability of using
each resource. As a consequence, the expected util-
ities and the best responses can be computed in
polynomial time. We reduce the problem of com-
puting a best/worst symmetric approximate mixed-
strategy Nash equilibrium in symmetric congestion
games to a constraint optimization problem on a
graph formed by the resources and the strategy con-
straints. As a result, we present a fully polynomial
time approximation scheme (FPTAS) for this prob-
lem when the graph has bounded treewidth.

1 Introduction

There has been increasing interest in using game theory to
model real-world multiagent systems, with the goal of pre-
dicting the behavior of the agents in these settings. This will
often require the computation of game-theoretic solution con-
cepts given a description of the model. Nash equilibrium is
the most well-known solution concept, and the computational
problem of finding Nash equilibria has received extensive
study in recent years. While perhaps the most famous the-
oretical results [Chen er al., 2009; Daskalakis and Papadim-
itriou, 2005] established the (PPAD-) hardness of the problem
given a game in normal form, this does not necessarily mean

efficient computation is impossible in practice. In fact, most
large games of practical interest are highly structured, and
this structure can potentially be exploited for efficient com-
putation.

One of the more well-known class of structured games is
congestion games, first introduced in [Rosenthal, 1973]. Con-
gestion games model the situation in which there is a set of re-
sources and each agent selects a subset of resources. The cost
of using a resource depends on the total number of agents
using it. As such, the agent’s goal is to select a subset of
resources that minimizes the total cost. An important sub-
class is network congestion games, which have been used to
model agents’ decisions when dealing with (potential) traffic
congestion on roads, as well as when sending data through a
computer network. More concretely, consider a road network
(represented by a graph) and each agent wants to travel from
a source to a destination. Since the congestion/delay of each
road depends on the number of people driving on them, the
goal of each agent is to select a route, from its source to its
destination, that minimizes the total delay which is the sum
of the delay the agent experience on each road of the route.

A key challenge. Notice that in network congestion games
each player’s set of pure strategies (i.e. paths) can be ex-
ponential in the size of the graph. This is not unique to
network congestion games: since a pure strategy is a sub-
set of resources, in many congestion games of interest, the
set of pure strategy is exponential in the number of re-
sources. This presents a significant obstacle to efficient com-
putation, as most existing algorithmic approaches for game-
theoretic computation assume that the game has polynomial
type [Daskalakis et al., 2006; Papadimitriou and Roughgar-
den, 2008], i.e., a polynomial number of players and strate-
gies, because they rely on being able to enumerate the set of
pure strategies for each player. As a result, such algorithms
would take exponential time on these congestion games.

In this paper, we study congestion games in which each
player’s strategy space is defined by a polytope, specified as
set of linear inequalities. This captures a wide range of con-
gestion games; for instance, in the case of network congestion
games, we can capture the set of pure strategies of each player
using a set of flow constraints [Daskalakis ez al., 2006].

In particular, our main contributions are: (i) we show that
we can represent players’ mixed strategies compactly using
marginals. As a result, we can compute the expected utilities



and best responses in polynomial time using the marginals as
opposed to the exponential time and space required when us-
ing the mixed strategies directly. (ii) We reduce the problem
of computing a best (or worst) social welfare symmetric ap-
proximate Nash equilibrium in symmetric congestion games
to a constraint optimization problem on a graph formed by
the resources and strategy constraints. (iii) We provide a fully
polynomial approximation scheme (FPTAS) when the graph
has bounded treewidth. As a corollary, our algorithm can be
used to solve network congestion games efficiently when the
network has bounded degree and bounded treewidth.

1.1 Related Work

As mentioned earlier, congestion games are first introduced
and studied in [Rosenthal, 1973]. It has been shown that ev-
ery congestion game has a pure-strategy Nash equilibrium
(PSNE) via a reduction to its potential game. Despite of
this, finding a PSNE is PLS-complete even in network con-
gestion games [Fabrikant et al., 2004]. In the case of sym-
metric network congestion games, Fabrikant et al provided
a polynomial time algorithm to find a PSNE. Independent of
our work, a recent work [Pia et al., 2015] also studied to-
tally unimodular symmetric congestion games and showed
that there is a polynomial time algorithm to compute a PSNE.
Furthermore, they also show that it is PLS-complete to find a
PSNE in the asymmetric case. In contrast, we focus on find-
ing symmetric approximate mixed-strategy Nash equilibria,
which required us to develop novel techniques on compactly
representing mixed strategies that is different from the exist-
ing literature on congestion games. Furthermore, our algo-
rithm is able to compute extremal equilibria, such as those
with the best/worst social welfare, which provide more infor-
mation about the entire set of equilibria. The only other result
for optimal equilibria in congestion games is leong et als’ al-
gorithm for optimal PSNE in singleton congestion games, in
which each pure strategy consists of one resource and thus
there are only a polynomial number of pure strategies per
player [Ieong er al., 2005]. Our algorithm is applicable to a
much wider range of congestion games, including those with
exponential number of pure strategies.

2 Preliminaries

A congestion game is specified by the
(N, R, {Si}ien, {cr}rer, {titien) where
e N ={1,...,,n} is the set of players.

tuple

e R ={1,...,m} is the set of resources.

e Each pure strategy s; € S; of player ¢ corresponds to
a subset of resources, represented by a | R|-dimensional
0 — 1 vector. Let s;, be the corresponding component of
aresource r € R.

e Let S =57 x...x 5, and s € S be a joint pure strategy
of the players.

e # : Rx S — Nis afunction that counts the numbers of
times the resources are used given joint pure-strategies.
In other words, #(r,s) = > . N Sir-

e ¢, : N — Ris a cost function for resource € R.

e Given a joint pure-strategy s = (s;,8—;) € 5,
the utility of player ¢ is defined to be u;(s;,s—;) =
- ZreR:sirzl CT(#(n S)) - - Zv-eR Sirc?’(#(rv 5))
A congestion game with polytopal strategy space (CG™)
is a congestion game (N, R, {S;}ien, {¢r }rer, {titien) in
which S; is represented as a polytopal strategy space: S; =
P, n {0,1} where P, = {x € R™ | Dz < fi},
D; € Z'*™ and f; € Z%. In other words, P; is a ratio-
nal polytope defined by [; linear constraints. Since .S; should
be nonempty for the game to be well-defined, we require that
P;n{0,1}™ % ( foreachi € N.
Before we move on, we make the following assumption.

Assumption 1. For each player i, the constraint matrix D;
is totally unimodular. !

As a result of this assumption, all extreme points of the
polytope P; are integral (and therefore pure strategies of 7).
In other words, P; = conv(S;).

Network Congestion Games. For instance, network con-
gestion games are an important class of CC™ that has the
totally unimdoular property. A network congestion game of
n players is defined on a directed graph G = (V, E) with
vertex set V' and edge set E. Each player ¢’s goal is to select
a path from its source s; € V to its destination d; € V that
minimizes the sum of delay on each edge, which depends on
the number of players selects the edge. The set of resources
is the set F, and the strategy set of each player ¢ is the possi-
ble number of paths from s; to d; in G. For each player 1, its
constraint matrix D; is the |V/| by |E| incidence matrix of G
and D; is totally unimodular [Pia et al., 2015].

Notation and Definition. The set of mixed strategies of
player i is defined to be the set of probability distributions
over i’s pure-strategy set .S;. We let X; = A(S;) to denote
such set and let X = X X... x X,, be the joint mixed-strategy
set. Moreover, for any z; € X, x;(s;) denote the probability
of playing pure-strategy s; € S; and > g wi(s;) = 1.
Let x(s) = J[,cnyxi(si). Given a joint mixed strategy
x € X, the expected utility of player ¢ is defined to be
Esolui(si;s—i)] = D cqx(s)ui(si, s—;). With a slight
abuse of notation, we let u;(z;,x_;) = Fgsuz|ui(si, 5—4)].
For the rest of the paper, we assume the utility values w;(s)
are all between zero and one.

For ease of reference, we provide the following standard
definition of Nash Equilibrium in terms of best-response.

Definition 1. Given a CG™ and a joint mixed strategy
x_; € X_; of other players except i, the mixed strategy x;
is an e-best-response of player i if and only if u;(x;, x_;) >
ui(Zi, x—;) — € for each T; € A(S;) and some 1 > € > 0.

Definition 2. Given a CG™, a joint mixed strategy x € X is
an e-mixed-strategy Nash equilibrium (e-MSNE) if and only
if for each player i € N, playing x; is an e-best-response to
x_;. We have an exact MSNE when € = 0.

It is not hard to see that computing best responses is a key

computational step in finding an MSNE, and computing ex-
pected utilities is an important part of finding best responses.

' A matrix is totally unimodular if each of its square sub-matrices
has determinant of 1, 0, and -1. [Hoffman and Kruskal, 1956]



However, there are two key issues in using the traditional
approach to compute expected utilities. The first is that we
need to specify the probability of playing each pure strategy,
and, in order to this, we need to know the set S; for each
player <. While finding a solution that is in the polytope takes
polynomial time, finding and enumerating all of the feasible
solutions would take exponential time. Second, computing
expected utilities of a given joint mixed strategy by directly
summing over the joint pure strategies could take time expo-
nential in the number of players.

In the next section we describe a way to compactly repre-
sent each mixed strategy (without enumerating all of the pure
strategies), which then allows us to compute the expected util-
ities more efficiently.

3 Representation of Mixed-Strategies

It turns out that we can use marginal vectors to compactly
represent mixed strategies. In particular, given a mixed strat-
egy z; € X, of player ¢, we define the marginal vector
P/ = (pir)rer to be an m-dimensional Vector such that
i = ZS s, s”xl(s,). In other words, p;} specifies the
probability ‘that 4 plays resource 7 given the mlxed strategy
x;. When the context is clear, we will drop the superscript ;.
As a result, we can show that we can compute the expected
utility of each player using the marginal mixed-strategies.

Claim 1. Given a joint mixed-strategy x_; € X_; of other
players except i and a pure-strategy s; € S;, the expected
utility of i of playing s; can be written as u;(s;,x_;) =

— 2 reR 2as_ses_, SirCr (ZjeN\{i} Sjr + 1) T_i(5-i)-
Claim 2. Given a joint mixed strategy x_; € X_; of other
players except i and a pure strategy s; € S;, let p; =
(pjr)rer be the marginal vectors of the player j € N \ {i}
such that p;, = Zsjesj sjrx;(s;). Let Q. = {0,1} to be
the outcome of whether player j will play a pure strategy that
contains the resource r. The expected utility of i of playing s;
can be written as

Z Z szrcT( Z wT].Jr1>

u; (8i,
r€ER wrEQ, JEN\{i}
W 1—wp
H pjr'J (1 _pjr) )
JeN\{i}

where 0, = HjeN\{i} Q. is the Cartesian product of the
sets (er)jeN\{i}-

Lemma 1. Given a joint mixed-strategy © € X, the expected
utility of player i can be computed via the following

pr Z Cr( Z wrj+1>

ui (i,
rER  wr€Qy FEN\{i}
[T p@-p) ™.
JEN\{i}

The above shows that we can compute the expected utilities
of the players by using marginal vectors. Directly computing
the above sum requires m|Q,| = m2"~! summands. Nev-
ertheless, expected utilities can be computed in polynomial
time, using a dynamic programming approach analogous to
[Papadimitriou and Roughgarden, 2008; Jiang et al., 2011].

From Marginal Probabilities to Mixed-Strategies Let us
now consider the issue of constructing a mixed strategy given
a marginal vector. First of all, since we have assumed that
the extreme points of the polytope P; are integer points, and
thus P; = conwv(S;), this becomes the problem of describ-
ing a point in a polytope by a convex combination of extreme
points of the polytope. By Caratheodory’s theorem, given
m; € R™: there exists a mixed strategy of support size at
most m; + 1 that matches the marginals. There has been ex-
isting work that provides efficient constructions for different
types of polytopes, including the Birkhoff-von Neumann the-
orem and its generalizations [Budish ef al., 2013]. The most
general result in [Grotschel ef al., 1981] reduces the problem
to the task of optimizing an arbitrary linear objective over F;.
This can be solved via linear programming in time polyno-
mial in m and [/; (the number of constraints in F;).

Thus, instead of specifying the probabilities of the mixed-
strategies, which can be exponential, now we only need to
specify the marginal probabilities of playing the resources.

3.1 Linear Programming Formulation of Best
Responses

As part of our algorithmic approach for finding MSNE, we
would like to formulate the best response condition as a set
of constraints on the player’s marginal vectors. One formu-
lation is that the expected utility of playing the best response
should be greater or equal to the expected utilities of play-
ing all other pure strategies. However, even though we can
compute expected utilities efficiently, stating the above will
require an exponential number of inequality constraints. In-
stead, we will reformulate the best-response condition of each
player using linear programing.

Let p; = (pir)rer be a marginal vector of player i. Let
Vi(p—i) = (Uyr(p—;))rer be the (resource-utility) vector that
specifies the contributions to ¢’s utility from each resource
given that the other players play the strategy p_;. Then the
expected utility of ¢ (the expression in Lemma 1) can be writ-
ten as p! V;(p_;). Therefore, given the marginal vectors of
other players, the best-response for player ¢ is the solution to
the following linear program.

maximize p; Vi(p_;)
subjectto  D;p; < f;
1>p;>0forr e R

We can formulate the dual linear program as the following.

minimize  f\;
subjectto  DI'\; > V,(p_;)
Aij > 0forj=1,2,..,1;

Since the primal LP is feasible, by LP duality the primal and
dual LPs obtain the same optimal objective value. Therefore,
p; is Player i’s best response when there exists a feasible dual
vector \; such that p! V;(p_;) = fT)\;. Thus, a feasible
marginal vector p is an MSNE if for each player 1, there exists
A; > 0 such that DT\, > V;(p_;) and p! V;(p—:) = f' i
Therefore, to check whether a particular marginal vector
is a best-response, we can check to see whether the expected
utility is equal to the optimal solution of the dual program.



This will involve only a polynomial number of constraints
and variables, in contrast to the exponential number of con-
straints in the direct formulation. Our goal now is to find a set
of marginal probabilities that will correspond to an MSNE.

Notice that the players’ linear programming formulation of
best responses do not tell us how to find an equilibrium, thus
we provide an algorithm to find one next.

4 Optimal Approximate Symmetric MSNE

Most algorithmic results for congestion games focus on find-
ing a PSNE, including polynomial algorithms for symmetric
network congestion games [Fabrikant et al., 2004] and sym-
metric CG* [Pia et al., 2015]. Nevertheless, finding one
equilibrium would have limited usefulness since there can be
an exponential number of equilibria in a game. We instead
focus on finding extremal equilibria, which tell us more in-
formation about the entire set of equilibria. In particular, we
consider the problem of computing a best/worst social wel-
fare symmetric e-MSNE efficiently for symmetric CG*. Our
results and algorithm can be extended to k-symmetric CG™
with constant number of player types k.

Definition 3. Consider a CGT with (N, R,{S;}ien,
{¢r}rers {titien). The game is symmetric if and only if
D;=D;=D, fi=f;= fforalli,j € N2

Below, we state a known useful result [Nash, 1951].

Proposition 1. For every symmetric CG™, there is a symmet-
ric MSNE in which every player plays the same strategies.

Since the same mixed strategies can be represented using
the same marginal vectors, the above implies the existence of
symmetric MSNE in terms of marginal vectors.

While there can be multiple symmetric MSNE in a sym-
metric CGt, we are interested in those with maximal (or
minial) social welfare, where social welfare is defined to be
the sum of all players’ expected utilities. Since in a symmet-
ric MSNE of a symmetric game, all players have the same ex-
pected utility, this is equivalent to finding symmetric MSNE
with maximal/minimal utility for one player.

Next, we show the existence of a symmetric e-MSNE in
which the marginal vector lies in a discretized grid in P;. This
allows us to search for e-MSNE in this discretized space.

Lemma 2. For any § > 0, there is a (symmetric) marginal
vector ¢ = (qr)rer in which q. € {0, %, %, ..., 1} and
K = O(lofzm), such that u(q,q—;) = ¢*'V(g_;) >

dTV(q_;)—O(dnm) forq' € [0,1]™ that satisfies Dq' < f.

Proof. Recall that there is at least one s € S* such that Ds <
f. Tt follows from Proposition 1, there is a symmetric MSNE
z* € X in any symmetric CGT. Let p = (p;)rer be the
marginal vector of the MSNE. From the approximated ver-
sion of the Caratheodory’s theorem (Theorem 3 of [Barman,
2015]), for every 6 > 0 and for every p € conv(S), there is
a multi-set ) C S™ of size O(log#) and ¢ = ﬁ > geol
and g € conv(S*) such that ||p — ¢||cc < 0. Thus, there is
a marginal mixed-strategies ¢ such that |p, — ¢,.| < ¢ for all
r € R. Next, we provide the following useful claims.

2This implies S; = S; =8P, =P; =P*foralli,j € N.

Claim 3. Givenr € R, |V(q—;)r — V(p—i)r| < O(dn).

Proof. (Sketch) From Lemma 1, the difference
of the expected utility from a resource r can
be written as [V(g—i)r — V(p-i)r| < >, ca,

H?:ll QT” (1 - qr)l_w” - H?le qTTJ (1 - QT)I_WTJ ’,
because the utility/cost functions are between 0 and 1. It
can be shown that the total variation distance of the above
distribution is O(dn) [Daskalakis et al., 2009]. O

p'Vi(p—) —

Claim 4. For any marginal mixed-strategy p,
PV (g_:)| < O(onm).

Claim 5. The marginal symmetric MSNE p is an O(énm)-
best-response to the marginal mixed-strategy q when all other
players play according to q.

Proof. By the definition of the symmetric MSNE, for any
p € conv(S), pIV(p_;) > p'TV(p_;). Moreover,
p'V(g-i) + O(@nm) > p'V(p_;) > p"V(pi) >
p'TV(g—i) — O(énm), where the first inequality is by
Claim 4, the second inequality is by the definition of MSNE,
and the last inequality is by Claim 4. It follows that
pT'V(g-i) > p'T'V(q_;) — O(dnm). Our result follows since
pis no less than the expected utility of other marginal mixed-
strategies minus O(dnm). O

To finish the proof, notice that,
tion/existence of ¢, for all » € R, |p, —

by our construc-
gr| < 6. Thus,

q"V(q_;) + O(6m) > p"V(q_;) > p'"V(g_;) — O(6nm)

and the last inequality is by Claim 5. Therefore, ¢ is
an O(dnm)-best-response to all others using the marginal
mixed-strategies q. If every player plays according to ¢, then
we have an O(dnm)-MSNE.

4.1 Conditions for Symmetric e-MSNE

From the proof of Lemma 2, we know the possible (dis-
cretized) values of q. However, the crucial part is check-
ing whether each marginal mixed-strategy (of the discretized
space) can be used to form an e-MSNE.

While we could use the standard e-MSNE conditions for
a given marginal mixed-strategy, it would take exponential
time. Instead of using the conditions, we will use the solution
of the dual linear program (as discussed in Section 3.1) to
check for equilibrium. We will derive such condition below.

For tractability, we also discretize the resource-utility
space and project the resource-utility to some discretization
of the space. Let V = {v;,i = 0,1,2,...,[42] | v; = /=}
to be the discretization of the utility space for some epsilon
1>e>0.

Claim 6. Given a symmetric marginal mixed-strategy q, and
let proj(u) = wv be the projection of some value u to a
value v € V such that v € (v — Z}Lm,v + 15). We have
> rer @rproj(V(g—i)r) = >, cp dlproj(V{q-i),) - § -
O(dnm), for any ¢’ € [0, 1]™ that satisfies Dq' < f.



Proof. To verify the above claim, notice that, for
each » € R, |V(g_i)r — proj(Vig-i)r)| <
17, and, for any marginal mixed-strategy ¢,
|ZTGR 4V (q—i)r — ZTER quroj(v(qfi)r)‘ ) < i
Thus, our bound follows from the above inequality. O

Using the above claim, we provide the following lemma.

Lemma 3. Given a symmetric marginal vector q, and let
proj(u) = v be the projection of some value u to a value v €
V suchthatu € (v— 55—, v+45). Let ¢* be a best response to

q. Wehave ) qrproj(V(g—i),) = FIXs— 5—0(0nm),
where fTX* is the optimal solution of the dual problem that
corresponds to the primal program given the discretized util-
ity values under proj(-) 3.

The above lemma allows us to verify whether a marginal
vector can be used to form an e-MSNE. It is not clear how we
can find the \* as claimed in the above lemma. Below, we
provide a lemma to specify the potential values of \*.

Lemma 4. The value of \* = (X\})i=1,2,... 1 is such that \} =
c;v; for some integer constant 0 < ¢; < mandv € V.

Proof. Since the solution for the primal program (i.e., exis-
tence of an e-MSNE) exists, there is a solution for its dual.
Since the transpose D7 is totally unimodular by Assump-
tion 1, each A} is some linear combination of the value of
proj(V(g—;)). Moreover, V is a uniform discretization and
A7 > 0. Thus, A} is some combination of values in V. O

4.2 An Algorithm to Find Symmetric e-MSNE

In this subsection, our goal is to develop an efficient algorithm
to find marginal vectors that satisfy the e-MSNE conditions as
discussed in the previous subsection.

Table 1 lists the variables and their uniform discretization
that we used in the following discussion. To get an e-MSNE,
we set 6 = m. Notice that the marginal ¢, of eachr € R

has finitely many values (from Lemma 2) in (). Since the
marginals have finitely many values and the resource-utility
values are discretized and projected as specified in the previ-
ous subsection, the expected utility has finitely many values
in T'. In addition, because the constraint matrix consists of
only 0, 1, and -1, for any constraint c, the possible values of
c-qofany g € Q™ is in 9D. Finally, each dual variable \;
is positive and is some linear combination of values in ). As
aresult, \. € A for some constraint c.

A natural question is how can we use these discretized val-
ues to compute e-MSNE efficiently? Before answering this
question, we define and introduce the following notation.

Definition 4. Given a symmetric CG™ with (N, R, {S}ien,
{¢+}rers {u}ien). Let C be the set of indices of constraints
in P* and ¢ € C corresponds to row c of D. The game’s
constraint graph is a directed graph G = (R U C, E) where
E ={(c,r) € Cx R| D, # 0}. The game’s induced graph
is an undirected graph IG = (R, E) where E = {(r1,12) €
R%?|3j€C,Dj,, #0,D,,, #0}.
We now state our main result.

3To get the primal/dual programs, take the programs in Sec-
tion 3.1 and replace V;(p—_;) by proj(Vi(p—:)).

Table 1: Variables (Var.) and Discretization

Var. Discretization

g Q={gii=0,...OC%™) | 4 = &}
Ac A={\,i=0,.. % | A = 4

t T = {t;i=0,., 700

|14 = Tno(zmy )
— L= ogm - v
0d| 0D = (4.1 =0,..mO(5™) [ 4: = 5ruigay)

Theorem 1. Given a symmetric CG™ whose constraint
graph’s in-degree is bounded by a constant d and whose in-
duced graph has treewidth bounded by a constant w. There
is a fully polynomial time approximate scheme (FPTAS) to
compute a best/worst social welfare symmetric e-MSNE in
poly(n,m, %) time.

As a corollary, we can state the sufficient condition for
FPTAS as a single graphical property of the game. Given
a directed graph (R, E), its primal graph (also known as
moral graph) is the undirected graph (R, E'U {(r,w)|3t €
R,(r,t) € E, (w,t) € E}), i.e., adding edges between each
pair of in-neighbors of each node.

Corollary 1. Given a symmetric CG™ such that the treewidth
of the primal graph of the constraint graph is bounded by a
constant W. There is a fully polynomial time approximate
scheme (FPTAS) for compute a best/worst social welfare sym-
metric e-MSNE in poly(n, m, %) time.

For simplicity of exposition, we describe our algorithm
for the case when the in-degrees of the constraint graph are
bounded by d and when its /G is a tree. The algorithm can
be generalized to /G with a bounded tree-width W.

Without loss of generality, we orient the tree in “level-
order” so that the first level consists of the root, the second
level consists of its children and so on. For convenience, we
relabel the nodes/resources so that the nodes are ordered such
that root is n, and its children, C'h(n), are (from right to left)
n — |Ch(n)], ..., n — 1, and subsequently for their respec-
tive children in the respective level. We let D(r) = {j €
C | Dj, # 0} to be the set of constraints such that their col-
umn corresponding to resource r is nonzero. Since V(q_;),
for r € R only depends on ¢,., we write V(g,.), instead.

Our message passing algorithm will be run on the induced
graph. Each resource will pass the appropriate messages to its
neighbors as specified below, first in an upstream pass from
the leaves to the root, then in a downstream pass from root to
the leaves. Since each resource, say a r € R, can be involved
in more than one constraints (each of which corresponds to
a dual variable), we need to keep track of possible values of
(Aj)jen(r) and the possible (sum of) values of D. ,.q,. In-
deed, since D is totally unimodular and we have a discretiza-
tion on ¢,-, we have discretization on the possible sums of the
constraints. It is clear that we have a finite discretization for
the possible value of A as well. As a result, this reduces to a
constraint optimization problem on discrete values.

To begin, we first describe the message from a leave [ €



R of the tree to its parent. Notice that along each message
passing, we will keep track of the best possible value of A\* =
(A})jec. We begin by discussing the upstream pass.

Upstream Pass.  For each leave [ € R, [ computes a table
fi: Qx T x dDPOI x AIPWI 5 10,1} such that

fila, t,(8d;)jepry, (Aj)iepwy) = 1[t = qproj(Via))]

11 110d; = Djia)1 Db - (Aj)jenwy = proj(Via)]

jeD()
specifies the feasible e-MSNE region. Moreover, the size of
this table is poly(n, m, %) (for bounded in-degrees). Let k =
Pa(l) denote the parent of [ and let D(I, k) = D(I) N D(k).
The message of [ — k is

Mk = {(a@,t,(9d;) jep.k): (Ni)jenr) |
3fi(@,t, (9d;)jepays (Nj)jepy) =1
andVj € D(I)\ D(I, k) 9d; < f;},

is the set of feasible tuples of size at most
poly(n,m,L). 1In addition, for j € D(I) \ D(l, k),
Aj € argmingyen, opeon)=1fiAs- For each non-leaf node
r € R, r computes a table f,. : Qx T x dD!PMI 5 AP
{0,1} given the messages from its children. Let Ch(r) be
the children of r and and we order the children by their index
such that 1 < r2 < ... < 7|gp(r)|- Notice that r will have
|Ch(r)| messages and the goal is to combine these messages
efficiently and construct f;..

Below, we describe an efficient way of combining the mes-
sages. For k = r1, we construct

Jrae = {(@r, 1, (0d;) jen(r ks (Aj)jen(m) |
V(qr, tr, (0d}) jeD(rky, (Nj)jeD(ri)) € Mi—r

1t = tr + qrproj(Via))] ] 10d; = 0d; + Djra]
JED(rk)

D! by - (A jener) = proj(Vigr)r)]},

and for k = ra, ..., 7|cn(r)|» We construct the following suc-
cessively, in that order,

fr,k = {(qTW t7 (8d])]€Uf;111 D(r,i) U D(r,k)’ (Aj)jGD(T)) |
V(ar,t', (0d;) e =1 piriyy Mi)ien) € Frim
V(qk, tr, (8d5) jen(r k), (N jen(rr)) € Mi—sr
1t =t + ] H 1{0d; = dd; + Dj rqy]
FED(rk)
1[D3:D(r) . ()\j)jeD(r) > proj(V(qr)T)]}-
Finally,
fr(gr,t,(9d;) jen(ry, (Ai)jen(m) =
1[(Qr, t7 (8dj)j€ng(;h(r) D(r,k)> (Aj)jED(T) € fr,mch(r)l]
1[8dj = 6d; + Dj,'r'qr}.
JED(rN\Urecn(r) P(rk)
Similarly, the message r will send to its parent k is
M,k = {(gr,t,(0d;)jeD(rk)s (Aj)jen(ri)) |
3fr(gr,t,(9d;) jen(r), (Nj)jen(rm) =1
andVj € D(r) \ D(r, k) 0d; < f;},

is the set of feasible tuples. In addition, for j € D(r) \
D(r, k), \; € arg Minyens, e p(oa,)=115A-
Note that computing the f ; requires us to deal with at

most two tables of poly(n,m, 1) size. Thus, computing the
final table f, doesn’t blow up the computation exponentially.

Downstream Pass.  After root n has received the messages
from its children, it is going to compute a partial e-MSNE and
pass it to its children. Given f,,, we construct

Ry = {(gnt, (0d;)jepn), (Nj)jenm)) |
Falgn,t,(9d;)jenimys M)jenmy) [ 110ds < fi}-

jeD(n)
For j € D(n),let A} € argmin. 5 ), fjA;. Next, find 4

(qnst, (0d;)jen(nys (Nj)jeD(n))

_ T _
€arg max(q"vf’(%j)jemn)7(5\j)jeD(n))€R(")1[t >[N =t

Indeed, n will send such a message to each of its children.
Given the message from the parent, say 4, k = 7|cn (i), -T2,

in that reverse order, will compute

Ri k(i tkt1, (0d)) jep(ays (Aj)jen(i) =

{(gr, tr, (0dy) jeDk,iys (Nj)jeD(k.i)) € My—i and

(Qi,tk+1 — tk, (ad;)jeu’j’/—l D(ii')? (A;)jED(i)) € fi,k—l :
i

[T 1o =0d; —Djig] T] 1IN, =N}

€Uy _,, D) JED()

where k£ will select (an arbitrary tuple of) message in R; j,
and send it to its children and the k£ — 1 node. In particular, &k
will send the Mj,_,; tuple to its children and send the f; 1
to k — 1 so that kK — 1 will use that tuple to compute R; 1.
When k£ = r1, we have

Ri x(gi, tr+1, (0d)) jep(), (MNi)jep)) =
{(qr, tx, (8d9)j€D(k,i)» (A;)jeD(k»i)) € My and
1tk+1 — te = qiproj(V(gi)i)]

H 1[8d; =0d; — Dini}l[/\/j =\t
JED(k,i)

Standard techniques that generalize algorithms for tree to
those of bounded treewidth yield Theorem 1.

Computing c-MSNE in Symmetric network congestion
games. As discussed in Section 2, the constraint matrix of the
players in network congestion games is totally unimdoular. It
turns out that the induced graph of the constraint matrix is
the line graph 3 of G. Applying a bounded-treewidth result
in [Atserias, 2008; Bienstock, 1990; Cilinescu et al., 2003],
if the graph of a congestion game has constant treewidth and
degree, the treewidth of its line graph is bounded.

Corollary 2. There is an FPTAS to compute a best/worst
symmetric e-MSNE for congestion games where their graphs
have constant treewidth and constant degree.

“For the worst e-MSNE, replace arg max by arg min.
>Given a graph G = (V, E), a line graph of G is a graph on E
where two edges in E are connected if they are incident in G.
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